Farmacología clínica de cannabidiol en epilepsias refractarias

Paula Schaiquevich, Natalia Riva, Cecilia Maldonado, Marta Vázquez, Paulo Cáceres-Guido

Resumen


Objetivo: El objetivo del presente trabajo es brindar una revisión sistemática y  actualizada acerca de la farmacología de cannabidiol, con especial énfasis en la  farmacocinética, eventos adversos e interacciones, vinculada al uso de este  fármaco en epilepsias refractarias.

Método: Se realizó una revisión de los trabajos publicados y relacionados con la farmacocinética y los eventos adversos e interacciones farmacológicas de  cannabidiol utilizado para el tratamiento de las epilepsias refractarias mediante  una búsqueda en PubMed y LILACS.

Resultados: Los estudios originales que describen la farmacocinética de cannabidiol de manera exhaustiva son limitados aunque informativos. La absorción de cannabidiol es rápida y se incrementa la biodisponibilidad por la  ingesta conjunta de comidas ricas en grasas. El cannabidiol presenta farmacocinética lineal hasta dosis de 3.000 mg/día y se acumula por la  administración continua. La semivida de eliminación se referencia entre 14 y 60  horas dependiendo de los tiempos de toma de muestra del estudio farmacocinético y no se descartan modificaciones en la eliminación por la administración en dosis múltiples. De las interacciones farmacológicas entre  cannabidiol con otros fármacos antiepilépticos referenciadas hasta el momento,  aquella con clobazam es la que presenta mayor evidencia científica. Los eventos  adversos más frecuentes asociados al uso de cannabidiol fueron de gravedad  leve o moderada e incluyeron somnolencia, principalmente por el uso conjunto  de clobazam, y alteraciones gastrointestinales. Se evidenciaron asimismo  anormalidades en la función hepática concomitantes con el uso de ácido  valproico.

Conclusiones: Ante la creciente demanda de la utilización de cannabidiol en  epilepsias refractarias, es fundamental el conocimiento de su farmacología por  parte del equipo de salud. En especial, el farmacéutico clínico juega un papel  primordial en la monitorización de su seguridad y eficacia. Esto permite la  optimización del tratamiento clínico del cannabidiol administrado conjuntamente  con otros fármacos antiepilépticos de mayor uso, lo que conduce a maximizar la  actividad farmacológica y minimizar la aparición de eventos adversos al igual  que de interacciones farmacológicas. El seguimiento clínico del paciente resulta  fundamental para evitar la discontinuación del tratamiento o exacerbación de  eventos adversos que afecten la calidad de vida del paciente.

 


Palabras clave


Cannabidiol; Farmacocinética; Epilepsia refractaria; Eventos adversos a fármacos; Interacciones farmacológicas

Texto completo:

PDF (English) PDF

Referencias


Pain S. A potted history. Nature. 2015;525(7570):S10-1. DOI: 10.1038/525S10a

Russo EB, Marcu J. Cannabis pharmacology: The usual suspects and a few promising leads. Adv Pharmacol. 2017;80:67-134. DOI: 10.1016/bs.apha.2017.03.004

Perucca E. Cannabinoids in the treatment of epilepsy: Hard evidence at last? J Epilepsy Res. 2017;7(2):61-76. DOI: 10.14581/jer.17012

Caceres Guido P, Riva N, Calle G, Dell’Orso M, Gatto M, Sberna N, et al. Medicinal cannabis in Latin America: History, current state of regulation, and the role of the pharmacist in a new clinical experience with cannabidiol oil. J Am Pharm Assoc. 2020;60(1):212-5. DOI: 10.1016/j.japh.2019.09.012

Devinsky O, Patel AD, Thiele EA, Wong MH, Appleton R, Harden CL, et al. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology. 2018; 90(14): e1204-e1211. DOI: 10.1212/WNL.0000000000005254.

Devinsky O, Cross JH, Laux L, Marsh E, Miller I, Nabbout R, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376(7):2011-20. DOI: 10.1056/NEJMoa1611618

Wheless JW, Dlugos D, Miller I, Oh DA, Parikh N, Phillips S, et al. Pharmacokinetics and tolerability of multiple doses of pharmaceutical- grade synthetic cannabidiol in pediatric patients with treatment-resistant epilepsy. CNS Drugs. 2019;33(6):593-604. DOI: 10.1007/s40263-019- 00624-4

Sands TT, Rahdari S, Oldham MS, Caminha Nunes E, Tilton N, Cilio MR. Long-term safety, tolerability, and efficacy of cannabidiol in children with refractory epilepsy: Results from an expanded access program in the US. CNS Drugs. 2019;33(1):47-60. DOI: 10.1007/s40263-018-0589-2

Neubauer D, Perkovic Benedik M, Osredkar D. Cannabidiol for treatment of refractory childhood epilepsies: Experience from a single tertiary epilepsy center in Slovenia. Epilepsy Behav. 2018;81:79-85. DOI: 10.1016/j.yebeh.2018.02.009

Silvestro S, Mammana S, Cavalli E, Bramanti P, Mazzon E. Use of cannabidiol in the treatment of epilepsy: Efficacy and security in clinical trials. Molecules. 2019;24(8):1459. DOI: 10.3390/molecules24081459

Pellati F, Brighenti V, Sperlea J, Marchetti L, Bertelli D, Benvenuti S. New methods for the comprehensive analysis of bioactive compounds in Cannabis sativa L. (hemp). Molecules. 2018;23(10). DOI: 10.3390/molecules23102639

Lafaye G, Karila L, Blecha L, Benyamina A. Cannabis, cannabinoids, and health. Dialogues Clin Neurosci. 2017;19(3):309-16.

Bow EW, Rimoldi JM. The structure-function relationships of classical cannabinoids: CB1/CB2 modulation. Perspect Medicin Chem. 2016;8:17- 39. DOI: 10.4137/PMC.S32171

Zhang X. Handbook of cannabis by Roger Pertwee. Oxford, UK: Oxford University Press, 2014. Br J Psychol. 2015;106(3):547-8. DOI: 10.1111/bjop.12138

Fernández-Ruiz J. Fármacos cannabinoides para las enfermedades neurológicas: ¿qué hay detrás? Rev Neurol. 2012;54(10):613-28. DOI: 10.33588/rn.5410.2011689

Szaflarski JP, Bebin EM. Cannabis, cannabidiol, and epilepsy-from receptors to clinical response. Epilepsy Behav. 2014;41:277-82. DOI: 10.1016/j.yebeh.2014.08.135

Dunn SL, Wilkinson JM, Crawford A, Bunning RAD, Le Maitre CL. Expression of cannabinoid receptors in human osteoarthritic cartilage: Implications for future therapies. Cannabis Cannabinoid Res. 2016;1(1):3-15. DOI: 10.1089/can.2015.0001

Moran BM, McKillop AM, O’Harte FP. Development of novel ligands for peptide GPCRs. Curr Opin Pharmacol. 2016;31:57-62. DOI: 10.1016/j.coph.2016.08.009

Gaston TE, Szaflarski JP. Cannabis for the treatment of epilepsy: An update. Curr Neurol Neurosci Rep. 2018;18(11):73. DOI: 10.1007/s11910-018-0882-y

Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55(6):791-802. DOI: 10.1111/epi.12631

Morales P, Reggio PH, Jagerovic N. An overview on medicinal chemistry of synthetic and natural derivatives of cannabidiol. Front Pharmacol. 2017;8:422. DOI: 10.3389/fphar.2017.00422

Ali S, Scheffer IE, Sadleir LG. Efficacy of cannabinoids in paediatric epilepsy. Dev Med Child Neurol. 2019;61(1):13-8. DOI: 10.1111/dmcn.14087

Rosenberg EC, Patra PH, Whalley BJ. Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. Epilepsy Behav. 2017;70(Pt B):319-27. DOI: 10.1016/j.yebeh.2016.11.006

Reddy DS, Golub VM. The pharmacological basis of cannabis therapy for epilepsy. J Pharmacol Exp Ther. 2016;357(1):45-55. DOI: 10.1124/jpet.115.230151

Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J. 2001; 20(24):7033-40. DOI: 10.1093/emboj/20.24.7033

Sylantyev S, Jensen TP, Ross RA, Rusakov DA. Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci USA. 2013;110(13):5193-8. DOI: 10.1073/pnas.1211204110

Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ. Molecular targets of cannabidiol in neurological disorders. Neurotherapeutics. 2015;12(4):699-730. DOI: 10.1007/s13311-015- 0377-3

Deiana S, Watanabe A, Yamasaki Y, Amada N, Arthur M, Fleming S, et al. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Delta(9)-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour. Psychopharmacology (Berl). 2012;219(3):859-73. DOI: 10.1007/s00213- 011-2415-0

Millar SA, Stone NL, Yates AS, O’Sullivan SE. A systematic review on the pharmacokinetics of cannabidiol in humans. Front Pharmacol. 2018;9:1365. DOI: 10.3389/fphar.2018.01365

Taylor L, Gidal B, Blakey G, Tayo B, Morrison G. A phase I, randomized, doubleblind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects. CNS Drugs. 2018;32(11):1053-67. DOI: 10.1007/s40263-018-0578-5

Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res. 2015;111:85-141. DOI: 10.1016/j.eplepsyres.2015.01.001

Birnbaum AK, Karanam A, Marino SE, Barkley CM, Remmel RP, Roslawski M, et al. Food effect on pharmacokinetics of cannabidiol oral capsules in adult patients with refractory epilepsy. Epilepsia. 2019;60(8):1586-92. DOI: 10.1111/epi.16093

Crockett J, Critchley D, Tayo B, Berwaerts J, Morrison G. A phase 1, randomized, pharmacokinetic trial ofthe effect of different meal compositions, whole milk, and alcohol on cannabidiol exposure and safety in healthy subjects. Epilepsia. 2020;61(2):267-77. DOI: 10.1111/epi.16419

Huntsman RJ, Tang-Wai R, Alcorn J, Vong S, Acton B, Corley S. Dosage related efficacy and tolerability of cannabidiol in children with treatment-resistant epileptic encephalopathy: Preliminary results of the CARE-E Study. Front Neurol. 2019;10:716. DOI: 10.3389/fneur.2019.00716

Thummel KE. Gut instincts: CYP3A4 and intestinal drug metabolism. J Clin Invest. 2007;117(11):3173-6. DOI: 10.1172/JCI34007

Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos. 2006;34(5):880-6. DOI: 10.1124/dmd.105.008672

Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet. 2003;42(4):327-60. DOI: 10.2165/00003088-200342040-00003

Zgair A, Wong JC, Lee JB, Mistry J, Sivak O, Wasan KM, et al. Dietary fats and pharmaceutical lipid excipients increase systemic exposure to orally administered cannabis and cannabis-based medicines. Am J Transl Res. 2016;8(8):3448-59.

Fromm MF. Importance of P-glycoprotein for drug disposition in humans. Eur J Clin Invest. 2003;33(Suppl 2):6-9. DOI: 10.1046/j.1365- 2362.33.s2.4.x

Cherniakov I, Izgelov D, Barasch D, Davidson E, Domb AJ, Hoffman A. Piperinepro-nanolipospheres as a novel oral delivery system of cannabinoids: Pharmacokinetic evaluation in healthy volunteers in comparison to buccal spray administration. J Control Release. 2017;266:1-7. DOI: 10.1016/j.jconrel.2017.09.011

Atsmon J, Cherniakov I, Izgelov D, Hoffman A, Domb AJ, Deutsch L, et al. PTL401, a new formulation based on pro-nano dispersion technology, improves oral cannabinoids bioavailability in healthy volunteers. J Pharm Sci. 2018;107(5):1423-9. DOI: 10.1016/j.xphs.2017.12.020

Dev A, Mundke MS, Pawar PK, Mohanty S. Critical aspects in sublingual route of drug delivery. Pharm Biol Eval. 2016;3(1):42-9.

Epidiolex® (cannabidiol) oral solution, CV. Initial U.S. Approval: 2018 [accessed: 02/2020]. Available at: https://www.epidiolex.com/sites/default/files/EPIDIOLEX_Full_Prescribing _Information.pdf

Hunt CA, Jones RT. Tolerance and disposition of tetrahydrocannabinol in man. J Pharmacol Exp Ther. 1980;215(1):35-44.

Wahlqvist M, Nilsson IM, Sandberg F, Agurell S. Binding of delta-1- tetrahydrocannabinol to human plasma proteins. Biochem Pharmacol. 1970;19(9):2579-84. DOI: 10.1016/0006-2952(70)90007-9

Klausner HA, Wilcox HG, Dingell JV. The use of zonal ultracentrifugation in the investigation of the binding of delta9- tetrahydrocannabinol by plasma lipoproteins. Drug Metab Dispos. 1975;3(4):314-9.

Widman M, Agurell S, Ehrnebo M, Jones G. Binding of (+)- and (minus)-delta-1-tetrahydrocannabinols and (minus)-7-hydroxy-delta-1- tetrahydrocannabinol to blood cells and plasma proteins in man. J Pharm Pharmacol. 1974;26(11):914-6. DOI: 10.1111/j.2042- 7158.1974.tb09207.x

What you should know about using cannabis, including CBD, when pregnant or breastfeeding? The Food and Drug Administration (FDA); 2019 [accessed: 02/2020]. Available at: fda.gov/consumers/consumer- updates/what-you-shouldknow-about-using-cannabis-including-cbd- when-pregnant-or-breastfeeding

US National Library of Medicine. Drugs and Lactation Database (LactMed) [base de datos en Internet]. Bethesda (MD): 2006, p. CASRN: 8063-14-7 [accessed: 02/2020]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK501587/.

Alozie SO, Martin BR, Harris LS, Dewey WL. 3H-delta 9- Tetrahydrocannabinol, 3H-cannabinol and 3H-cannabidiol: penetration and regional distribution in rat brain. Pharmacol Biochem Behav. 1980;12(2):217-21. DOI: 10.1016/0091-3057(80)90359-7

Siemens AJ, Walczak D, Buckley FE. Characterization of blood disappearance and tissue distribution of [3H]cannabidiol. Biochem Pharmacol. 1980;29(3):462-4. DOI: 10.1016/0006-2952(80)90532-8

Stout SM, Cimino NM. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev. 2014;46(1):86-95. DOI: 10.3109/03602532.2013.849268

Jiang R, Yamaori S, Takeda S, Yamamoto I, Watanabe K. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Sci. 2011;89(5-6):165-70. DOI: 10.1016/j.lfs.2011.05.018

Harvey DJ. Metabolism and pharmacokinetics of the cannabinoids. En: Watson RR, (ed.). Biochemistry and Physiology of Substance Abuse. Boca Ratón (FL): CRC Press; 1991. p. 279-365.

Yamaori S, Okamoto Y, Yamamoto I, Watanabe K. Cannabidiol, a major phytocannabinoid, as a potent atypical inhibitor for CYP2D6. Drug Metab Dispos. 2011;39(11):2049-56. DOI: 10.1124/dmd.111.041384

Brown NK, Harvey DJ. In vitro metabolism of cannabichromene in seven common laboratory animals. Drug Metab Dispos. 1990;18(6):1065-70.

Huestis MA. Pharmacokinetics and metabolism of the plant cannabinoids, Δ9-tetrahydrocannibinol, cannabidiol and cannabinol. En: Pertwee RG (ed.) Cannabinoids. Handbook of Experimental Pharmacology, vol 168. Springer: Berlin, Heidelberg; 2005. DOI: https://doi.org/10.1007/3-540-26573-2_23

Ujvary I, Hanus L. Human metabolites of cannabidiol: A review on their formation, biological activity, and relevance in therapy. Cannabis Cannabinoid Res. 2016;1(1):90-101. DOI: 10.1089/can.2015.0012

Ohlsson A, Lindgren JE, Andersson S, Agurell S, Gillespie H, Hollister LE. Singledose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration. Biomed Environ Mass Spectrom. 1986;13(2):77-83. DOI: 10.1002/bms.1200130206

Taylor L, Crockett J, Tayo B, Morrison G. A phase 1, open-label, parallel-group, single-dose trial of the pharmacokinetics and safety of cannabidiol (CBD) in subjects with mild to severe hepatic impairment. J Clin Pharmacol. 2019;59(8):1110-9. DOI: 10.1002/jcph.1412

Stott C, White L, Wright S, Wilbraham D, Guy G. A Phase I, open- label, randomized, crossover study in three parallel groups to evaluate the effect of rifampicin, ketoconazole, and omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers. SpringerPlus. 2013;2(1):236. DOI: 10.1186/2193-1801-2-236

Jiang R, Yamaori S, Okamoto Y, Yamamoto I, Watanabe K. Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metab Pharmacokinet. 2013;28(4):332-8. DOI: https://doi.org/10.2133/dmpk.DMPK-12-RG-129

Huddart R, Leeder JS, Altman RB, Klein TE. PharmGKB summary: clobazam pathway, pharmacokinetics. Pharmacogenet Genomics. 2018;28(4):110-5. DOI: 10.1097/FPC.0000000000000327

Morrison G, Crockett J, Blakey G, Sommerville K. A phase 1, open- label, pharmacokinetic trial to investigate possible drug-drug interactions between clobazam, stiripentol, or valproate and cannabidiol in healthy subjects. Clin Pharmacol Drug Dev. 2019;8(8):1009-31. DOI: 10.1002/cpdd.665

Anderson LL, Absalom NL, Abelev SV, Low IK, Doohan PT, Martin LJ, et al. Coadministered cannabidiol and clobazam: preclinical evidence for both pharmacodynamic and pharmacoinetic interactions. Epilepsia. 2019;60(11):2224-34. DOI: 10.1111/epi.16355

Gaston TE, Bebin EM, Cutter GR, Liu Y, Szaflarski JP, UAB CBD Program. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia. 2017;58(9):1586-92. DOI: 10.1111/epi.13852

Geffrey AL, Pollack SF, Bruno PL, Thiele EA. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015;56(8):1246-51. DOI: 10.1111/epi.13060

Zendulka O, Dovrtelova G, Noskova K, Turjap M, Šulcová A, Hanuš L, et al. Cannabinoids and cytochrome P450 interactions. Curr Drug Metab. 2016;17(3):206-26. DOI: 10.2174/1389200217666151210142051

Arellano AL, Papaseit E, Romaguera A, Torrens M, Farre M. Neuropsychiatric and general interactions of natural and synthetic cannabinoids with drugs of abuse and medicines. CNS Neurol Disord Drug Targets. 2017;16(5):554-66. DOI: 10.2174/1871527316666170413104516

Holland M, Lau D, Allen J, Arnold J. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids. Br J Pharmacol. 2007;152(5):815-24. DOI: 10.1038/sj.bjp.0707467

Holland M, Panetta J, Hoskins J, Bebawy M, Roufogalis BD, Allen JD, et al. The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells. Biochem Pharmacol. 2006;71(8):1146-54. DOI: 10.1016/j.bcp.2005.12.033

Feinshtein V, Erez O, Ben-Zvi Z, Eshkoli T, Sheizaf B, Sheiner E, et al. Cannabidiol enhances xenobiotic permeability through the human placental barrier by direct inhibition of breast cancer resistance protein: An ex vivo study. Am J Obstet Gynecol. 2013;209(6):e1-573.e15. DOI: 10.1016/j.ajog.2013.08.005

Zhu HJ, Wang JS, Markowitz JS, Donovan JL, Gibson BB, Gefroh HA, et al. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. J Pharmacol Exp Ther. 2006;317(2):850-7. DOI: 10.1124/jpet.105.098541

Feinshtein V, Erez O, Ben-Zvi Z, Erez N, Eshkoli T, Sheizaf B, et al. Cannabidiol changes P-gp and BCRP expression in trophoblast cell lines. Peer J. 2013;1:e153. DOI: 10.7717/peerj.153

Brzozowska N, Li K, Wang X, Booth J, Stuart J, McGregor IS, et al. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice. Peer J. 2016;4:e2081. DOI: 10.7717/peerj.2081




DOI: http://dx.doi.org/10.7399%2Ffh.11390

Enlaces refback

  • No hay ningún enlace refback.


Incluida en:

Bibliovigilance Dialnet DOAJ Dulcinea EBSCO Embase ESCI Ibecs Latindex MEDES mEDRA MIAR PUBMED REDALYC Redib SciELO SCOPUS Sherpa/Romero

Farmacia Hospitalaria

Sociedad Española de Farmacia Hospitalaria. C/ Serrano n. 40 2º Dcha. - 28001 Madrid

eISSN: 2171-8695 

ISSN-L: 1130-6343

Dep. Legal: M-39835-2012

Correo electrónico de contacto: [email protected]

Los artículos publicados en esta revista se distribuyen con la licencia: Creative Commons Attribution 4.0.

La revista Farmacia Hospitalaria no cobra tasas por el envío de trabajos, ni tampoco cuotas por la publicación de sus artículos.