Nuevos sistemas de liberación de fármacos a nivel ocular
Resumen
Desde hace décadas, la administración tópica oftálmica de fármacos mediante el empleo de colirios ha sido la técnica más empleada para el tratamiento de patologías oculares. El desarrollo de la galénica ha permitido el uso y comercialización de nuevas formulaciones que incrementan el tiempo de residencia en el lugar de acción, como es el caso de las suspensiones, emulsiones y pomadas oftálmicas. Recientemente se han desarrollado nuevos sistemas de administración, como es el caso de dispositivos e insertos que proporcionan una cesión sostenida de principio activo. Algunos de estos sistemas ya se encuentran disponibles en el mercado, mientras que otros todavía están en fase de ensayo clínico, como es el caso también de los prometedores sistemas basados en nanoestructuras (nanocápsulas, ciclodextrinas, nanoemulsiones, etc.). De la misma forma, diversas formulaciones y dispositivos han sido desarrollados en el campo de la administración intravítrea, estando disponibles en el mercado europeo diversos implantes para el tratamiento de la degeneración macular asociada a la edad (DMAE), el edema macular diabético o infecciones que afectan al segmento posterior. En esta revisión se recogen los desarrollos actualmente implementados y en fase de investigación asociados a las vías de administración oftálmica de fármacos tópicos e intravítreos.
Palabras clave
Referencias
Cabrera FJ, Wang DC, Reddy K, Acharya G, Shin CS. Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discov Today. 2019;24(8):1679-84.
Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother. 2018;107:1564-82. DOI: 10.1016/j.biopha.2018.08.138
Agrahari V, Agrahari V, Mandal A, Pal D, Mitra AK. How are we improving the delivery to back of the eye? Advances and challenges of novel therapeutic approaches. Expert Opin Drug Deliv. 2017;14(10):1145-62. DOI: 10.1080/17425247.2017.1272569
Ranta VP, Mannermaa E, Lummepuro K, Subrizi A, Laukkanen A, Antopolsky M, et al. Barrier analysis of periocular drug delivery to the posterior segment. J Control Release. 2010;148(1):42-8. DOI: 10.1016/j.jconrel.2010.08.028
Subrizi A, del Amo EM, Korzhikov-Vlakh V, Tennikova T, Ruponen M, Urtti A. Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties. Drug Discov Today. 2019;24(8):1446-57. DOI: 10.1016/j.drudis.2019.02.001
Millar TJ, Schuett BS. The real reason for having a meibomian lipid layer covering the outer surface of the tear film – A review. Exp Eye Res. 2015;137:125-38. DOI: 10.1016/j.exer.2015.05.002
Wang J, Fonn D, Simpson TL, Jones L. Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography. Invest Ophthalmol Vis Sci. 2003;44(6):2524. DOI: 10.1167/iovs.02-0731
Ragland SA, Criss AK. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog. 2017;13(9):e1006512. DOI: 10.1371/journal.ppat.1006512
Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: A literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479-88. DOI: 10.1021/js9802594
Fernández-Ferreiro A, Barcia M, Gil-Martínez M, Méndez J, Luaces- Rodríguez A, Tomé V, et al. Critical factors involved in the determination of the optimal concentration of ophthalmic anti-infective compounded drugs. Int J Clin Pharmacol Pharmacother. 2016;1. DOI: 10.15344/2456- 3501/2016/122
Del Monte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588-98. DOI: 10.1016/j.jcrs.2010.12.037
Moiseev RV, Morrison PWJ, Steele F, Khutoryanskiy VV. Penetration enhancers in ocular drug delivery. Pharmaceutics. 2019;11(7):321. DOI: 10.3390/pharmaceutics11070321
Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735-54. DOI: 10.1007/s13346-016-0339-2
González Barcia M, Esteban Cartelle H. Formulación magistral en oftalmología. En: Aspectos prácticos de la farmacotecnia en un Servicio de Farmacia. Madrid: Master Line & Prodigio; 2011. p. 245-74.
Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134-85. DOI: 10.1016/j.preteyeres.2016.12.001
Miyamoto N, de Kozak Y, Normand N, Courtois Y, Jeanny JC, BenEzra D, et al. PlGF-1 and VEGFR-1 Pathway Regulation of the External Epithelial Hemato-Ocular Barrier. Ophthalmic Res. 2008;40(3-4):203-7. DOI: 10.1159/000119877
Reimondez-Troitino S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015;95(Pt B):279-93. DOI: 10.1016/j.ejpb.2015.02.019
Bertens CJF, Gijs M, van den Biggelaar FJHM, Nuijts RMMA. Topical drug delivery devices: A review. Exp Eye Res. 2018;168:149-60. DOI: 10.1016/j.exer.2018.01.010
Castro-Balado A, González-López J, Blanco-Méndez J. Requerimientos básicos para la elaboración de colirios. En: Fernández-Ferreiro A. Formulación Magistral Oftálmica Antiinfecciosa. Madrid: Sociedad Española de Farmacia Hospitalaria; 2019. p. 63-70.
Mehta S, Armstrong BK, Kim SJ, Toma H, West JN, Yin H, et al. Long- term potency, sterility, and stability of vancomycin, ceftazidime, and moxifloxacin for treatment of bacterial endophthalmitis. Retina. 2011;31(7):1316-22. DOI: 10.1097/IAE.0b013e31820039af
Yellepeddi VK, Palakurthi S. Recent advances in topical ocular drug delivery. J Ocul Pharmacol Ther. 2016;32(2):67-82. DOI: 10.1089/jop.2015.0047
Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, et al. Principles of pharmacology in the eye. Br J Pharmacol. 2017;174(23):4205-23. DOI: 10.1111/bph.14024
Fernández-Ferreiro A, Luaces-Rodríguez A, Lamas-Díaz MJ. La formulación magistral de antiinfecciosos tópicos en oftalmología. En: Formulación Magistral Oftálmica Antiinfecciosa. Madrid: Sociedad Española de Farmacia Hospitalaria; 2019. p. 21-32.
Edwards A, Prausnitz MR. Predicted permeability of the cornea to topical drugs. Pharm Res. 2001;18(11):1497-508. DOI: 10.1023/a:1013061926851
Ho LC, Conner IP, Do CW, Kim SG, Wu EX, Wollstein G, et al. In vivo assessment of aqueous humor dynamics upon chronic ocular hypertension and hypotensive drug treatment using gadolinium-enhanced MRI. Invest Ophthalmol Vis Sci. 2014;55(6):3747-57. DOI: 10.1167/iovs.14-14263
Shikamura Y, Yamazaki Y, Matsunaga T, Sato T, Ohtori A, Tojo K. Hydrogel ring for topical drug delivery to the ocular posterior segment. Curr Eye Res. 2016; 41(5):653-61. DOI: 10.3109/02713683.2015.1050738
Zhang W, Prausnitz MR, Edwards A. Model of transient drug diffusion across cornea. J Control Release. 2004;99(2):241-58. DOI: 10.1016/j.jconrel.2004.07.001
Pelkonen L, Tengvall-Unadike U, Ruponen M, Kidron H, del Amo EM, Reinisalo M, et al. Melanin binding study of clinical drugs with cassette dosing and rapid equilibrium dialysis inserts. Eur J Pharm Sci. 2017;109:162-8. DOI: 10.1016/j.ejps.2017.07.027
Carreon TA, Edwards G, Wang H, Bhattacharya SK. Segmental outflow of aqueous humor in mouse and human. Exp Eye Res. 2017;158:59-66. DOI: 10.1016/j.exer.2016.08.001
Del Amo EM, Urtti A. Rabbit as an animal model for intravitreal pharmacokinetics: Clinical predictability and quality of the published data. Exp Eye Res. 2015;137:111-24. DOI: 10.1016/j.exer.2015.05.003
Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: A review. Open Ophthalmol J. 2010;4:52-9. DOI: 10.2174/1874364101004010052
Loewen RT, Brown EN, Roy P, Schuman JS, Sigal IA, Loewen NA. Regionally discrete aqueous humor outflow quantification using fluorescein canalograms. PLOS ONE. 2016;11(3):e0151754. DOI: 10.1371/journal.pone.0151754
Bonfiglio A, Lagazzo A, Repetto R, Stocchino A. An experimental model of vitreous motion induced by eye rotations. Eye Vis. 2015;2(1):10. DOI: 10.1186/s40662-015-0020-8
Stocchino A, Repetto R, Cafferata C. Eye rotation induced dynamics of a Newtonian fluid within the vitreous cavity: the effect of the chamber shape. Phys Med Biol. 2007;52(7):2021-34. DOI: 10.1088/0031- 9155/52/7/016
Guo T, Sampathkumar S, Fan S, Morris N, Wang F, Toris CB. Aqueous humour dynamics and biometrics in the ageing Chinese eye. Br J Ophthalmol. 2017;101(9):1290-6. DOI: 10.1136/bjophthalmol-2016- 309883
Li J, Lan B, Li X, Sun S, Lu P, Cheng L. Effect of intraocular pressure (IOP) and choroidal circulation on controlled episcleral drug delivery to retina/vitreous. J Control Release. 2016;243:78-85. DOI: 10.1016/j.jconrel.2016.10.001
Ambati J, Canakis CS, Miller JW, Gragoudas ES, Edwards A, Weissgold DJ, et al. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci. 2000;41(5):1181-5.
Bauer NJ, Motamedi M, Wicksted JP, March WF, Webers CA, Hendrikse F. Noninvasive assessment of ocular pharmacokinetics using confocal raman spectroscopy. J Ocul Pharmacol Ther. 1999;15(2):123- 34. DOI: 10.1089/jop.1999.15.123
Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG. Topical and systemic drug delivery to the posterior segments. Adv Drug Delivery Reviews. 2005;57(14):2010-32. DOI: 10.1016/j.addr.2005.09.004
Lee SJ, Kim SJ, Kim ES, Geroski DH, McCarey BE, Edelhauser HF. Trans-scleral permeability of Oregon Green 488®. J Ocul Pharmacol Ther. 2008;24(6):579-86. DOI: 10.1089/jop.2008.0050
Järvinen K, Järvinen T, Urtti A. Ocular absorption following topical delivery. Adv Drug Delivery Reviews. 1995;16(1):3-19. DOI: 10.1016/0169-409X(95)00010-5
Yavuz B, Kompella UB. Ocular Drug Delivery. En: Whitcup SM, Azar DT, editores. Pharmacologic therapy of ocular disease. Handbook of Experimental Pharmacology, Vol. 242. Springer International Cham; 2017; p. 57-93. DOI: 10.1007/164_2016_84
Kidron H, Del Amo EM, Vellonen KS, Urtti A. Prediction of the vitreal half-life of small molecular drug-like compounds. Pharm Res. 2012;29(12):3302-11. DOI: 10.1007/s11095-012-0822-5
Ahmed I, Patton TF. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 1985;26(4):584-7.
Fernández-Ferreiro A, González Barcia M, Gil-Martínez M, Vieites- Prado A, Lema I, Argibay B, et al. In vitro and in vivo ocular safety and eye surface permanence determination by direct and magnetic resonance imaging of ion-sensitive hydrogels based on gellan gum and kappa- carrageenan. Eur J Pharm Biopharm. 2015;94:342-51. DOI: 10.1016/j.ejpb.2015.06.003
Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: Present innovations and future challenges. J Pharmacol Exp Ther. 2019;jpet.119.256933. DOI: 10.1124/jpet.119.256933
Luaces-Rodríguez A, Díaz-Tomé V, González-Barcia M, Silva- Rodríguez J, Herranz M, Gil-Martínez M, et al. Cysteamine polysaccharide hydrogels: Study of extended ocular delivery and biopermanence time by PET imaging. Int J Pharm. 2017;528(1):714-22. DOI: 10.1016/j.ijpharm.2017.06.060
Yellepeddi VK, Palakurthi S. Recent advances in topical ocular drug delivery. J Ocul Pharmacol Ther. 2016;32(2):67-82. DOI: 10.1089/jop.2015.0047
Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A, Camins Espuny A, et al. Advanced formulation approaches for ocular drug delivery: State-of-the-art and recent patents. Pharmaceutics. 2019;11(9):460. DOI: 10.3390/pharmaceutics11090460
Fernández-Ferreiro A, Bargiela NF, Varela MS, Martínez MG, Pardo M, Ces AP, et al. Cyclodextrin-polysaccharide-based, in situ-gelled system for ocular antifungal delivery. Beilstein J Org Chem. 2014;10(1):2903-11. DOI: 10.3762/bjoc.10.308
Díaz-Tomé V, Luaces-Rodríguez A, Silva-Rodríguez J, Blanco-Dorado S, García-Quintanilla L, Llovo-Taboada J, et al. Ophthalmic econazole hydrogels for the treatment of fungal keratitis. J Pharm Sci. 2018;107(5):1342-51. DOI: 10.1016/j.xphs.2017.12.028
Fernández-Ferreiro A, González-Barcia M, Gil-Martínez M, Santiago- Varela M, Pardo M, Blanco-Méndez J, et al. Evaluation of the in vitro ocular toxicity of the fortified antibiotic eye drops prepared at the Hospital Pharmacy Departments. Farm Hosp. 2016;40(5):352-70. DOI: 10.7399/fh.2016.40.5.10416
Luaces-Rodríguez A, González-Barcia M, Blanco-Teijeiro MJ, Gil- Martínez M, González F, Gómez-Ulla F, et al. Review of intraocular pharmacokinetics of antiinfectives commonly used in the treatment of infectious endophthalmitis. Pharmaceutics. 2018;10(2):66. DOI: 10.3390/pharmaceutics10020066
García-Millán E, Castro-Balado A, Fernández-Ferreiro A, Otero-Espinar FJ. Contact lenses as drug delivery systems. En: Arno F, Rein E. Recent progress in eye research. New York: Nova Science Publishers, Inc.; 2017. p. 91-154.
Maulvi FA, Soni TG, Shah DO. A review on therapeutic contact lenses for ocular drug delivery. Drug Delivery. 2016;23(8):3017-26. DOI: 10.3109/10717544.2016.1138342
Álvarez-Lorenzo C, Anguiano-Igea S, Varela-García A, Vivero-López M, Concheiro A. Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater. 2018;5;84:49-62. DOI: 10.1016/j.actbio.2018.11.020
Calles JA, Bermúdez J, Vallés E, Allemandi D, Palma S. Polymers in ophthalmology. En: Puoci F, editor. Advanced polymers in medicine [Internet]. Cham: Springer International Publishing; 2015 [accessed 10/25/2019]; p. 147-76. Available at: https://doi.org/10.1007/978-3- 319-12478-0_6
Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3(2):275-87. DOI: 10.1517/17425247.3.2.275
Rajasekaran A, Kumaran K, Preetha JP, Karthika K. A comparative review on conventional and advanced ocular drug delivery formulations. International Journal of PharmTech Research. 2010;2(1):668-74.
Luchs JI, Nelinson DS, Macy JI; Group L-07-01 S. Efficacy of hydroxypropyl cellulose ophthalmic inserts (LACRISERT) in subsets of patients with dry eye syndrome: findings from a patient registry. Cornea. 2010;29(12):1417-27. DOI: 10.1097/ICO.0b013e3181e3f05b
Papangkorn K, Truett KR, Vitale AT, Jhaveri C, Scales DK, Foster CS, et al. Novel dexamethasone sodium phosphate treatment (DSP-Visulex) for noninfectious anterior uveitis: A randomized phase I/II clinical trial. Curr Eye Res. 2019;44(2):185-93. DOI: 10.1080/02713683.2018.1540707
Cagini C, Caricato A, Tosi G, Pascale A, Cesari C, Fiore T. Evaluation of the efficacy and safety of the ophthalmic insert mydriasert in patients undergoing retinal angiography. Eur J Ophthalmol. 2014;24(5):728-34. DOI: 10.5301/ejo.5000444
Pijls RT, Sonderkamp T, Daube GW, Krebber R, Hanssen HHL, Nuijts RMMA, et al. Studies on a new device for drug delivery to the eye. Eur J Pharm Biopharm. 2005;59(2):283-8. DOI: 10.1016/j.ejpb.2004.08.011
Pijls RT. The OphthaCoil: a new vehicle for the delivery of drugs to the eye. Maastricht: Maastricht University; 2007.
Brandt JD, Sall K, DuBiner H, Benza R, Alster Y, Walker G, et al. Six- month intraocular pressure reduction with a topical bimatoprost ocular insert: Results of a phase II randomized controlled study. Ophthalmology. 2016;123(8):1685-94. DOI: 10.1016/j.ophtha.2016.04.026
García-Quintanilla L, Luaces-Rodríguez A, Gil-Martínez M, Mondelo- García C, Maroñas O, Mangas-Sanjuan V, et al. Pharmacokinetics of intravitreal anti-VEGF drugs in age-related macular degeneration. Pharmaceutics. 2019;11(8):365. DOI: 10.3390/pharmaceutics11080365
Rezaei KA, Wen JC. Intravitreal injection technique. MedEdPORTAL. 2016;12:10502. DOI: 10.15766/mep_2374-8265.10502
Castro-Balado A, Mondelo-García C, González-Barcia M, Zarra-Ferro I, Otero-Espinar FJ, Ruibal-Morell Á, et al. Ocular biodistribution studies using molecular imaging. Pharmaceutics. 2019;11(5):237. DOI: 10.3390/pharmaceutics11050237
Okada M, Kandasamy R, Chong EW, McGuiness M, Guymer RH. The treatand-extend injection regimen versus alternate dosing strategies in age-related macular degeneration: A systematic review and meta- analysis. Am J Ophthalmol. 2018;192:184-97. DOI: 10.1016/j.ajo.2018.05.026
Delplace V, Payne S, Shoichet M. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions. J Control Release. 2015;219:652-68. DOI: doi.org/10.1016/j.jconrel.2015.09.065
Luaces-Rodríguez A, Mondelo-García C, Zarra-Ferro I, González- Barcia M, Aguiar P, Fernández-Ferreiro A, et al. Intravitreal anti-VEGF drug delivery systems for age‑related macular degeneration. Int J Pharm. 2020;573:118767. DOI: 10.1016/j.ijpharm.2019.118767
Adamson P, Wilde T, Dobrzynski E, Sychterz C, Polsky R, Kurali E, et al. Single ocular injection of a sustained-release anti-VEGF delivers 6 months pharmacokinetics and efficacy in a primate laser CNV model. J Control Release. 2016;244:1-13. DOI: 10.1016/j.jconrel.2016.10.026
Campochiaro PA, Marcus DM, Awh CC, Regillo C, Adamis AP, Bantseev V, et al. The port delivery system with ranibizumab for neovascular age- related macular degeneration: Results from the randomized phase 2 Ladder clinical trial. Ophthalmology. 2019;126(8):1141-54. DOI: 10.1016/j.ophtha.2019.03.036
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348-60. DOI: 10.1208/s12248-010-9183-3
Shah TJ, Conway MD, Peyman GA. Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: design, development, and place in therapy. Clin Ophthalmol. 2018;12:2223-35. DOI: 10.2147/OPTH.S165722
Gutiérrez-Hernández JC, Caffey S, Abdallah W, Calvillo P, González R, Shih J, et al. One-year feasibility study of replenish micropump for intravitreal drug delivery: A pilot study. Transl Vis Sci Technol. 2014;3(4):8. DOI: 10.1167/tvst.3.4.1
Patel SR, Berezovsky DE, McCarey BE, Zarnitsyn V, Edelhauser HF, Prausnitz MR. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53(8):4433-41. DOI: 10.1167/iovs.12- 9872
Rai UDJP, Young SA, Thrimawithana TR, Abdelkader H, Alani AWG, Pierscionek B, et al. The suprachoroidal pathway: a new drug delivery route to the back of the eye. Drug Discov Today. 2015;20(4):491-5. DOI: 10.1016/j.drudis.2014.10.010
Eljarrat-Binstock E, Pe’er J, Domb AJ. New techniques for drug delivery to the posterior eye segment. Pharm Res. 2010;27(4):530-43. DOI: 10.1007/s11095-009-0042-9
Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23(5):279-96. DOI: 10.1016/0039-6257(79)90158-9
Vellonen KS, Soini EM, del Amo EM, Urtti A. Prediction of ocular drug distribution from systemic blood circulation. Mol Pharm. 2016;13(9):2906-11. DOI: 10.1021/acs.molpharmaceut.5b00729
Brockhaus L, Goldblum D, Eggenschwiler L, Zimmerli S, Marzolini C. Revisiting systemic treatment of bacterial endophthalmitis: a review of intravitreal penetration of systemic antibiotics. Clin Microbiol Infect. 2019;25(11):1364-9. DOI: 10.1016/j.cmi.2019.01.017
Battaglia Parodi M, La Spina C, Berchicci L, Petruzzi G, Bandello F. Photosensitizers and photodynamic therapy: Verteporfin. Dev Ophthalmol. 2016;55:330-6. DOI: 10.1159/000434704
Miguel A, Henriques F, Azevedo LF, Pereira AC. Ophthalmic adverse drug reactions to systemic drugs: a systematic review. Pharmacoepidemiol Drug Saf. 2014;23(3):221-33. DOI: 10.1002/pds.3566
DOI: http://dx.doi.org/10.7399%2Ffh.11388
Enlaces refback
- No hay ningún enlace refback.
Farmacia Hospitalaria
Sociedad Española de Farmacia Hospitalaria. C/ Serrano n. 40 2º Dcha. - 28001 Madrid
eISSN: 2171-8695
ISSN-L: 1130-6343
Dep. Legal: M-39835-2012
Correo electrónico de contacto: [email protected]
Los artículos publicados en esta revista se distribuyen con la licencia: Creative Commons Attribution 4.0.
La revista Farmacia Hospitalaria no cobra tasas por el envío de trabajos, ni tampoco cuotas por la publicación de sus artículos.