Farmacocinética y farmacodinámica de los antibióticos betalactámicos en pacientes críticos
Resumen
La terapia antibiótica óptima en los pacientes en estado crítico puede
complicarse por la alteración de la fisiología asociada a esta etapa de la
enfermedad. La farmacocinética y la exposición a los antibióticos pueden
verse alteradas por la enfermedad crítica subyacente y las intervenciones
médicas que reciben estos pacientes en la unidad de cuidados intensivos.
Además, las cepas que suelen encontrarse en la unidad de cuidados intensivos
suelen ser menos susceptibles y “resistentes” a los antibióticos más
habituales. De hecho, una dosificación de antibióticos que no tenga en
cuenta estas diferencias únicas, probablemente fracasará y dará lugar a
resultados clínicos deficientes y a la aparición de resistencia a los antibióticos
en la unidad de cuidados intensivos. Los objetivos de esta revisión son
describir la farmacocinética de los antibióticos betalactámicos en pacientes
críticos, destacar los objetivos farmacocinéticos/farmacodinámicos para
los pacientes y exponer algunas estrategias importantes que pueden optimizar
la dosificación de los antibióticos betalactámicos en pacientes críticos
en la unidad de cuidados intensivos.
Palabras clave
Referencias
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis- 3). JAMA. 2016;315:801-10. DOI: 10.1001/jama.2016.0287
Sakr Y, Jaschinski U, Wittebole X, Szakmany T, Lipman J, Ñamendys- Silva SA, et al. Sepsis in intensive care unit patients: worldwide data from the intensive care over nations audit. Open Forum Infect Dis. 2018;5:313. DOI: 10.1093./ofid/ofy313
Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Eng J Med. 2003;348:1546-54. DOI: 10.1056/NEJMoa022139
Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014;311:1308-16. DOI: 10.1001/jama.2014.2637
Rhee C, Dantes R, Epstein L, Murphy D, Seymour CW, Iwashyna TJ, et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009‑2014. JAMA. 2017;318:1241-9. DOI: 10.1001/jama.2017.13836
SepNet Critical Care Trial Group. Incidence of severe sepsis and septic shock in German intensive care units: the prospective, multicentre INSEP study. Intensive Care Med. 2016;42:1980-9. DOI: 10.1007/s00134-016-4504-3
Sakr Y, Elia C, Mascia L, Barberis B, Cardellino S, Livigni L, et al. Epidemiology and outcome of sepsis syndromes in Italian ICUs: a muticentre, observational cohort study in the region of Piedmont. Minerva Anestesiol. 2013;79:993-1002.
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45:486-552. DOI: 10.1097/CCM.0000000000002255
Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Pjillips GS, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Eng J Med. 2017;376:2235-44. DOI: 10.1056/NEJMoa1703058
Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, et al. Antimicrobial-resistant pathogens associated with healthcare- associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol. 2013;34:1-14. DOI: 10.1086/668770
Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient—concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev. 2014;77:3-11. DOI: 10.1016/j.addr.2014.07.006
Jochberger S, Mayr V, Luckner G, Fries DR, Mayr AJ, Friesenecker BE, et al. Antifactor Xa activity in critically ill patients receiving antithrombotic prophylaxis with standard dosages of certoparin: a prospective, clinical study. Crit Care. 2005;9:1‑8. DOI: 10.1186/cc37923
Mehta RL. Fluid balance issues in the critically ill patient. Fluid Overload. 2010;164:69-78. DOI: 10.1159/000313722
Conil J, Georges B, Brenden A, Segonds C, Lavit M, Seguin T, et al. Increased amikacin dosage requirements in burn patients receiving a once-daily regimen. Int J Antimicrob Agents. 2006;28:226-30. DOI: 10.1016/j.ijantimicag
Marik P. Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care. 1993;21:172-3. DOI: 10.1177/0310057X9302100206
Buerger C, Plock N, Dehghanyar P, Joukhadar C, Kloft C. Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother. 2006;50:2455-63. DOI: 10.1128/AAC.01468-05
Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14:498-509. DOI: 10.1016/S1473.3099(14)70036.-2
De Winter S, Van Hest R, Dreesen E, Annaert P, Wauters J, Meersseman W, et al. Quantification and Explanation of the Variability of First-Dose Amikacin Concentrations in Critically Ill Patients Admitted to the Emergency Department: A Population Pharmacokinetic Analysis. Eur J Drug Metabol Pharmacokin. 2011;1:11. DOI: 10.1007/s13318-021- 00698-w
Goncalves-Pereira J, Povoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of beta-lactams. Crit Care. 2011;15:R206. DOI: 10.1186/cc10441
Taccone FS, Laterre PF, Spapen H, Dugernier T, Delattre I, Layeux B, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care. 2010;14:1-10. DOI: 101186/cc8945
Delattre IK, Hites M, Laterre PF, Dugernier T, Spapen H, Wallemacq PE, et al. What is the optimal loading dose of broad-spectrum β-lactam antibiotics in septic patients? Results from pharmacokinetic simulation modelling. Int J Antimicrob Agents. 2020;56:106-13. DOI: 10.1016/j.ijantimicag.2020.106113
Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International consensus guidelines for the optimal use of the polymyxins. Pharmacotherapy. 2019;39;10-39. DOI: 10.1002/phar.2209
Goncalves-Pereira J, Martins A, Povoa P. Pharmacokinetics of gentamicin in critically ill patients: pilot study evaluating the first dose. Clin Microbiol Infect. 2010;16:1258‑63. DOI: 10.11/j.1469- 0691.2009.03-074.x
Sato M, Chida K, Suda T, Gemma H, Nakumura H, Muramatsu H, et al. Recommended initial loading dose of teicoplanin, established by therapeutic drug monitoring, and outcome in terms of optimal trough level. J Infect Chemother. 2006;12:185-9. DOI: 10.1007/s10156-006- 0446-Y
Álvarez O, Plaza-Plaza JC, Ramírez M, Peralta A, Amador CA, Amador R, et al. Pharmacokinetic assessment of vancomycin loading dose in critically ill patients. Antimicrob Agents Chemother. 2017;61:e00280-00217. DOI: 10.1128/AAC.00280-17
Ulldemolins M, Roberts JA, Wallis SC, Rello J, Lipman J. Flucloxacillin dosing in critically ill patients with hypoalbuminaemia: special emphasis on unbound pharmacokinetics. J Antimicrob Chemother. 2010;65:1771- 8. DOI: 10.1093/jac/dkq184
Schleibinger M, Steinbach C, Töpper C, Kratzer A, Liebchen U, Kees F, et al. Protein binding characteristics and pharmacokinetics of ceftriaxone in intensive care unit patients. Br J Clin Pharmacol. 2015;80:525-33. DOI: 10.1111/bcp.12636
Brink A, Richards G, Schillack V, Kiem S, Schentag J. Pharmacokinetics of oncedaily dosing of ertapenem in critically ill patients with severe sepsis. Int J Antimicrob Agents. 2009;33:432-6. DOI: 10.1016/j.ijantimicag.2008.10.005
Gregoire N, Chauzy A, Buyck J, Rammaert B, Couet W, Marchand S, et al. Clinical Pharmacokinetics of Daptomycin. Clin Pharmacokinet. 2021;60:271-81. DOI: 10.1007/s40262-020-00968-x
Ocampos-Martinez E, Penaccini L, Scolleta S, Abdelhadii A, Devigli A, Cianferoni S, et al. Determinants of early inadequate vancomycin concentrations during continuous infusion in septic patients. Int J Antimicrob Agents. 2012;39:332-7. DOI: 100.1016/j.ijantimicag.2011.12.008
Conil JM, Georges B, Lavit M, Laguerre J, Samii K, Houin G, et al. A population pharmacokinetic approach to ceftazidime use in burn patients: influence of glomerular filtration, gender and mechanical ventilation. Br J Clin Pharmacol. 2007;64:27-35. DOI: 10.1111/j.1365- 2125.2007.02857.x
Hites M, Dell’Anna AM, Scolletta S, Taccone FS. The challenges of multiple organ dysfunction syndrome and extra-corporeal circuits for drug delivery in critically ill patients. Adv Drug Deliv Rev. 2014;77:12- 21. DOI: 10.1016/j.addr.2014.05.007
Adnan S, Xuanhui J, Wallis S, Rudd M, Jarret P, Paterson D, et al. Ph armacokinetics of meropenem and piperacillin in critically ill patients with indwelling surgical drains. Int J Antimicrob Agents. 2013;42:90-3. DOI: 10.1016/j.ijantimicag.2013.02.023
Ronchera-Oms CL, Tormo C, Ordovás JP, Abad J, Jiménez NV. Expanded gentamicin volume of distribution in critically ill adult patients receiving total parenteral nutrition. J Clin Pharm Ther. 1995;20:253-8. DOI: 10.1111/j.1365-2710.1995.tb00659.x
Claus B, Colpaert K, Hoste E, Decruyenaere J, De Waele J. Increased glomerular filtration in the critically ill patient receiving anti-infective treatment. Crit Care. 2010;14:1-2.
Bilbao-Meseguer I, Rodríguez-Gascón A, Barrasa H, Isla A, Solinís MÁ. Augmented renal clearance in critically ill patients: a systematic review. Clin Pharmacokinet. 2018;57:1107-21. DOI: 10.1007/s40262- 018-0636-7
Fuster-Lluch O, Gerónimo-Pardo M, Peyró-García R, Lizán-García M. Glomerular hyperfiltration and albuminuria in critically ill patients. Anaesth Intensive Care. 2088,36:674-80. DOI: 10.1177/0310057X0803600507
Udy AA, Jarret P, Lassing-Smith M, Stuart J, Starr T, Dunlop R, et al. Augmented Renal Clearance in Traumatic Brain Injury: A Single-Center Observational Study of Atrial Natriuretic Peptide, Cardiac Output, and Creatinine Clearance. J Neurotraum. 2017;34:137-44. DOI: 10.1089/neu.2015.4328
Carrie C, Petit L, D´Houdain N, Sauvage N, Cottenceau V, Laffite M, et al. Association between augmented renal clearance, antibiotic exposure and clinical outcome in critically ill septic patients receiving high doses of beta-lactams administered by continuous infusion: a prospective observational study. Int J Antimicrob Agents. 2018;51:443-9. DOI: 10.1016/j.ijantimicag.2017.11.013
Huttner A, Von Dach E, Renzoni A, Huttner BD, Affaticati M, Pagani L, et al. Augmented renal clearance, low beta-lactam concentrations and clinical outcomes in the critically ill: an observational prospective cohort study. Int J Antimicrob Agents. 2015;45:385-92. DOI: 10.1016/j.ijantimicag.2014.12.017
Bakke V, Sporsem H, Von der Lippe E, Nordoy I, lao Y, Nyrerod HC, et al. Vancomycin levels are frequently subtherapeutic in critically ill patients: a prospective observational study. Acta Anaesthesiol Scand. 2017;61:627-35. DOI: 10.1111/aas.12897
Hirai K, Ishii H, Shimosshikiryo T, Shimomura T, Tsuji D, Inoue K, et al. Augmented Renal Clearance in Patients With Febrile Neutropenia is Associated With Increased Risk for Subtherapeutic Concentrations of Vancomycin. Ther Drug Monit. 2016;38:706-10. DOI: 10.1097/FTD.0000000000000346
Baptista JP, Sousa E, Martins PJ, Pimentel JM. Augmented renal clearance in septic patients and implications for vancomycin optimisation. Int J Antimicrob Agents. 2012;39:420-3. DOI: 10.1016/j.ijantimicag.2011.12.011
Eyler RF, Mueller BA. Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol. 2011;7:226-35. DOI: 10.1038/nrneph.2011.12
Jamal JA, Udy AA, Lipman J, Roberts JA. The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: an analysis of published literature and dosing regimens. Crit Care Med. 2014;42:1640-50. DOI: 10.1097/CCM.0000000000000317
Medellín-Garibay SE, Romano-Moreno S, Tejedor-Prado P, Rubio- Álvaro N, Rueda-Naharro A, Blasco-Navalpotro MA, et al. Influence of mechanical ventilation on the pharmacokinetics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2017;61:e01249-01217. DOI: 10.1128/AAC.01249- 17
Conil JM, Georges B, Labit M, Laguerre J, Samii K, Houin G, et al. A population pharmacokinetic approach to ceftazidime use in burn patients: influence of glomerular filtration, gender and mechanical ventilation. Br J Clin Pharmacol. 2007;64:27-35. DOI: 10.1111/j.1365- 2125.2007.02857.x
Roberts JA, Goynt GM, Lee A, Choi G, Bellomo R, Kanji S, et al. The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients: data from the multinational sampling antibiotics in renal replacement therapy study. Clin Infect Dis. 2021;72:1369-78. DOI: 10.1093/cid/ciaa224
Burdet C, Pajot O, Couffignal C, Armand-Lefèvre L, Foucrier A, Laouènan C, et al. Population pharmacokinetics of single-dose amikacin in critically ill patients with suspected ventilator-associated pneumonia. Eur J Clin Pharmacol. 2015;71:75-83. DOI: 10.1007/s00228-014-1766- y
Der Merwe F, Wallis S, Udy A. Understanding the impact of critical illness on drug pharmacokinetics-scientifically robust study design. J Clinic Toxicol. 2012;S4:2161‑0495.
Georges B, Conil JM, Seguin T, Ruiz S, Minville V, Cougot P, et al. Population pharmacokinetics of ceftazidime in intensive care unit patients: influence of glomerular filtration rate, mechanical ventilation, and reason for admission. Antimicrob Agents Chemother. 2009;53:4483-9. DOI: 10.1128/AAC.00430-09
Martin C, Lambert D, Bruguerolle B, Saux P, Freney J, Fleurette J, et al. Ofloxacin pharmacokinetics in mechanically ventilated patients. Antimicrob Agents Chemother. 1991;35:1582-5. DOI: 10.1128/AAC.35.8.1582
Perkins MW, Dasta JF, Dehaven B. Physiologic implications of mechanical ventilation on pharmacokinetics. DICP. 1989;23:316-23. DOI: 10.1177/106002808902300408
Roberts JA, Joynt GM, Lee A, Choi G, Bellomo R, Kanji S, et al. The Effect of Renal Replacement Therapy and Antibiotic Dose on Antibiotic Concentrations in Critically Ill Patients: Data From the Multinational Sampling Antibiotics in Renal Replacement Therapy Study. Clin Infect Dis. 2021;72:1369-78. DOI: 10.1093/cid/ciaa224
Pistolesi V, Morabito S, Di Mario F, Regolisti G, Cantarelli C, Fiaccadori E. A guide to understanding antimicrobial drug dosing in critically ill patients on renal replacement therapy. Antimicrob Agents Chemother. 2019;63:e00583-00519. DOI: 10.1128/AAC.00583-19
Legrand M, Darmon M, Joannidis M, Payen D. Management of renal replacement therapy in ICU patients: an international survey. Intensive Care Med. 2013;39:101‑8. DOI: 10.1007/s00134-012-2706-x
Bellomo R, Cass A, Cole L, Finfer S, Gallaher M, Goldsmith D, et al. Renal replacement therapy for acute kidney injury in Australian and New Zealand intensive care units: a practice survey. Crit Care Resusc.2008;10:225-30.
Sime FB, Roberts JA. Antibiotic dosing in critically ill patients receiving renal replacement therapy. Expert Rev Clin Pharmacol. 2016;9:497-9. DOI: 10.1586/17512433.2016.1133290
Gattinoni L, Carlesso E, Langer T. Clinical review: Extracorporeal membrane oxygenation. Crit Care. 2011;15:1-6. DOI: 10.1186/cc10490
World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance. in Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: Interim guidance 21-21 (2020).
Sherwin J, Heath T, Watt K. Pharmacokinetics and Dosing of Anti-nfective Drugs in Patients on Extracorporeal Membrane Oxygenation: A Review of the Current Literature. Clin Therap. 2016;38:1976-94. DOI: 10.1016/j.clinthera.2016.07.169
Cheng V, Abdul-Aziz MH, Roberts JA, Shekar K. Optimising drug dosing in patients receiving extracorporeal membrane oxygenation. J Thorac Dis. 2018;10:S629. DOI: 10.21037/jtd.2017.09.154
Wildschut E, Ahsman M, Allegaert K, Mathot R, Tibboel D. eterminants of drug absorption in different ECMO circuits. Intensive Care Med. 2010;36:2109-16. DOI: 10.1007/s00134-010-2041-z
Shekar K, Roberts JA, Barnett AG, Diab S, Wallis SC, Fung YL, et al. Can physicochemical properties of antimicrobials be used to predict their pharmacokinetics during extracorporeal membrane oxygenation? Illustrative data from ovine models. Crit Care. 2015;19:1-11. DOI: 10.1186/s13054-015-1151-y
Shekar K, Roberts JA, McDonald CI, Fisquet S, Barnett AG, Mullany DV, et al. Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation. Crit Care. 2012;16:1-7. DOI: 10.1186/cc11679
Buck ML. Pharmacokinetic changes during extracorporeal membrane oxygenation. Clin Pharmacokinet. 2003;42:403-17. DOI: 10.2165/00003088-200342050-00001
Shekar K, Fraser JF, Smith MT, Roberts JA. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J Crit Care. 2012;27:741-9. DOI: 10.1016/j.jcrc.2012.02.013
Cheng V, Abdul-Aziz MH, Burrows F, Buscher H, Cho YJ, Corley A, et al. Population Pharmacokinetics of Piperacillin and Tazobactam in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation: an ASAP ECMO Study. Antimicrob Agents Chemother. 2021;65:e0143821. DOI: 10.1128/AAC.01438-21
Cheng V, Abdul-Aziz MH, Burrows F, Buscher H, Cho YJ, Corley A, et al. Population pharmacokinetics of vancomycin in critically ill adult patients receiving extracorporeal membrane oxygenation (an ASAP ECMO study). Antimicrob Agents Chemother. 2021;AAC0137721. DOI: 10.1128/AAC.01377-21
Cheng V, Abdul-Aziz MH, Burrows F, Buscher H, Corley A, Dielh A, et al. Population pharmacokinetics of cefepime in critically ill patients receiving extracorporeal membrane oxygenation (an ASAP ECMO study). Int J Antimicrob Agents. 2021;58:106466. DOI: 10.1016/j.ijantimicag.2021.106466
Dhanani JA, Lipman J, Pincus J, Townsend S, Livermore A, Wallis SC, et al. Pharmacokinetics of fluconazole and ganciclovir as combination antimicrobial chemotherapy on ECMO: a case report. Int J Antimicrob Agents. 2021;106431. DOI: 10.1016/j.ijantimicag.2021.106431
Dhanani JA, Lipman J, Pincus J, Townsend S, Livermore A, Wallis SC, et al. Pharmacokinetics of Sulfamethoxazole and Trimethoprim During Venovenous Extracorporeal Membrane Oxygenation: A Case Report. Pharmacotherapy. 2020;40(7):713-7. DOI: 10.1002/phar.2413
Dhanani JA, Lipman J, Pincus J, Townsend S, Livermore A, Wallis SC, et al. Pharmacokinetics of Total and Unbound Cefazolin during Veno- Arterial Extracorporeal Membrane Oxygenation: A Case Report. Chemotherapy. 2019;64:115-8. DOI: 10.1159/000502474
Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014,58:1072-83. DOI: 10.1093/cid/ciu027
Blot S, Koulenti D, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. Does contemporary vancomycin dosing achieve therapeutic targets in a heterogeneous clinical cohort of critically ill patients? Data from the multinational DALI study. Crit Care. 2014;18:1-12. DOI: 10.1186/cc13874
Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26:1-10. DOI: 10.1086/516284
Abdul-Aziz MH, Alffenaar JWC, Bassetti M, Bracht H, Dimopoulos G, Marriot D, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med. 2020;46:1127-53. DOI: 10.1007/s00134-020-06050-1
Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016;42:1535-45.
DOI: 10.1007/s00134-015-4188-0
Roberts JA, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Piperacillin penetration into tissue of critically ill patients with sepsis— bolus versus continuous administration? Crit Care Med. 2009;37:926- 33. DOI: 10.1097/CCM.0b013e3181968e44
Eagle H, Fleischman R, Musselman AD. Effect of Schedule of Administration on the Therapeutic Efficacy of Penicillin. Importance of the Aggregate Time Penicillin remains at Effectively Bactericidal Levels. Am J Med. 1950;9:280-99. DOI: 10.1016/0002-9343(50)90425-6
Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, O Cotta M, Myburgh J, et al. Continuous versus intermittent β-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. 2016;194(6):681-91. DOI: 10.1164/rccm.201601-0024OC
Roberts JA, Webb S, Paterson D, Ho KM, Lipman J. A systematic eview on clinical benefits of continuous administration of β-lactam antibiotics. Crit Care Med. 2009;37:2071-8. DOI: 10.1097/CCM.0b013e3181a0054d
Kasiakou SK, Sermaides GJ, Michalopoulos A, Soteriades ES, Falagas ME. Continuous versus intermittent intravenous administration of antibiotics: a meta-analysis of randomised controlled trials. Lancet Infect Dis. 2005;5:581-9. DOI: 10.1016/S1473-3099(05)70218-8
Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013;56:272-82. DOI:
1093/cid/cis857
Teo J, Liew Y, Lee W, Kwa ALH. Prolonged infusion versus intermittent boluses of β-lactam antibiotics for treatment of acute infections: a meta-analysis. Int J Antimicrob Agents. 2014;43:403-11. DOI: 10.1016/j.ijantimicag.2014.01.027
Yusuf E, Spapen H, Piérard D. Prolonged vs intermittent infusion of piperacillin/tazobactam in critically ill patients: a narrative and systematic review. J Crit Care. 2014;29:1089-95. DOI: 10.1016/j.jcrc.2014.07.033
Shiu JR, Wang E, Tejani AM, Wasdell M. Continuous versus ntermittent infusions of antibiotics for the treatment of severe acute infections. Cochrane Database Syst Rev. 2013(3):CD008481. DOI: 10.1002/14651858.CD008481.pub2
Rhodes NJ, MacVane SH, Kuti JL, Scheetz MH. Impact of loading doses on the time to adequate predicted beta-lactam concentrations in prolonged and continuous infusion dosing schemes. Clin Infect Dis. 2014;59:905-7. DOI: 10.1093/cid/ciu402
Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. Reply to Rhodes et al. Clin Infect Dis. 2014,59:907-8. DOI: 10.1093/cid/ciu403
Paul M, Theuretzbacher U. β-lactam prolonged infusion: it’s time to implement! Lancet Infect Dis. 2017;18:13-4. DOI: 10.1016/S1473-3099(17)30614-X
Bigley FP, Forsyth RJ, Henley MW. Compatibility of imipenem- cilastatin sodium with commonly used intravenous solutions. Am J Hosp Pharm. 1986;43:2803-9.
Patel PR, Cook SE. Stability of meropenem in intravenous solutions. Am J Health Syst Pharm. 1997;54:412-21. DOI: 10.1093/ajhp/54.4.412
Cook B, Hill S, Lynn B. The stability of amoxycillin sodium in intravenous infusion luids. J Clin Pharm Ther. 1982;7:245-50. DOI: 10.1111/j.1365-2710.1982.tb01029.x
Stiles ML, Allen LV. Stability of nafcillin sodium, oxacillin sodium, penicillin G potassium, penicillin G sodium, and tobramycin sulfate in polyvinyl chloride drug reservoirs. Am J Health Syst Pharm. 1997;54:1068-70. DOI: 10.1093/ajhp/54.9.1068
Stewart JT, Warren FW, Johnson SM, Fox JL, Mullaney J. Stability of ceftazidime in plastic syringes and glass vials under various storage conditions. Am J Hosp Pharm. 1992;49:2765-8.
Bolla B, Buxani Y, Wong R, Jones L, Dube M. Understanding IV antimicrobial drug losses: the importance of flushing infusion administration sets. JAC-Antimicrobial Resistance. 2020,2:dlaa061. DOI: 10.1093/jacamr/dlaa061
Peyko V. An Unrecognized Problem in Optimizing Antimicrobial Therapy: Significant Residual Volume Remaining in Intravenous Tubing With Extended-Infusion Piperacillin–Tazobactam. J Pharm Pract. 2021:08971900211033462. DOI: 10.1177/08971900211033462
Lam WJ, Bhowmick T, Gross A, Vanschooneveld TC, Weinstein MP. Using higher doses to compensate for tubing residuals in extended- infusion piperacillin-tazobactam. Ann Pharmacother. 2013;47:886-91. DOI: 10.1345/aph.1R721
Hermsen ED, Fehrenbacher L. Antibiotic Stewardship and Applications of Pharmacodynamics. Antibiotic Pharmacodynamics. 2016;633-47.
Udy AA, Roberts JA, Lipman J, Blot S. The effects of major burn related pathophysiological changes on the pharmacokinetics and pharmacodynamics of drug use: An appraisal utilizing antibiotics. Adv Drug Deliv Rev. 2018;123:65-74. DOI: 10.1016/j.addr.2017.09.019
Alobaid AS, Wallis SC, Jarrett P, Starr T, Stuart J, Lassig-Smith M, et al. Population pharmacokinetics of piperacillin in nonobese, obese, and morbidly obese critically ill patients. Antimicrob Agents Chemother. 2017;61:e01276-01216. DOI:10.1128/AAC.01276-16
Roberts JA, Udy AA, Jarrett P, Wallis SC, Hope WW, Sharma R, et al. Plasma and target-site subcutaneous tissue population pharmacokinetics and dosing simulations of cefazolin in post-trauma critically ill patients. J Antimicrob Chemother. 2015;70:1495-502. DOI: 10.1093/jac/dku564
Weber N, Jackson K, McWhinney B, Ungerer J, Kennedy G, Lipman J, et al. Evaluation of pharmacokinetic/pharmacodynamic and clinical outcomes with 6-hourly empiric piperacillin-tazobactam dosing in hematological malignancy patients with febrile neutropenia. J Infect Chemother. 2019;25:503-8. DOI: 10.1016/j.jiac.2019.02.014
Sime FB, Roberts MS, Tiong IS, Gardner JH, Lehman S, Peake SL, et al. Can therapeutic drug monitoring optimize exposure to piperacillin in febrile neutropenic patients with haematological malignancies? A randomized controlled trial. J Antimicrob Chemother. 2015;70:2369-75. DOI: 10.1093/jac/dkv123
De Waele JJ, Carrette S, Carlier M, Stove V, Boelens J, Claeys G, et al. Therapeutic drug monitoring-based dose optimisation of piperacillin and meropenem: a randomised controlled trial. Intensive Care Med. 2014:40:380-7. DOI: 10.1007/s00134-013-3187-2
Hagel S, Fiedler S, Hohn A, Brinkmann A, Frey OR, Hoyer H, et al. Therapeutic drug monitoring-based dose optimisation of piperacillin/tazobactam to improveoutcome in patients with sepsis (TARGET): a prospective, multi-centre, randomised controlled trial. Trials. 2019;20:330. DOI: 10.1186/s13063-019-3437-x
Abdulla A, Ewoldt TM, Hunfeld NGM, Muller AE, Rietdijk WJR, Polinder S, et al. The effect of therapeutic drug monitoring of beta- lactam and fluoroquinolones on clinical outcome in critically ill patients: the DOLPHIN trial protocol of a multicentre randomised controlled trial. BMC Infect Dis. 2020;20:57. DOI: 10.1186/s12879-020-4781-x
Wong G, Briscoe S, McWhinney B, Ally M, Ungerer J, Lipman J, et al. Therapeutic drug monitoring of β-lactam antibiotics in the critically ill: direct measurement of unbound drug concentrations to achieve appropriate drug exposures. J Antimicrob Chemother. 2018;73:3087-94. DOI: 10.1093/jac/dky314
Economou CJP, Wong G, McWhinney B, Ungerer JPJ, Lipman J, Roberts JA, et al. Impact of β-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy. Int J Antimicrob Agents. 2017;49:589-94. DOI: 0.1016/j.ijantimicag.2017.01.009
Fournier A, Eggimann P, Pagani JL, Revelly JP, Decosterd LA, Marchetti O, et al. Impact of the introduction of real-time therapeutic drug monitoring on empirical doses of carbapenems in critically ill burn patients. Burns. 2015;41:956-68. DOI: 10.1016/j.burns.2015.01.001
Patel BM, Paratz J, See NC, Muller MJ, Rudd M, Paterson D, et al. Therapeutic drug monitoring of beta-lactam antibiotics in burns patients —a oneyear prospective study. Ther Drug Monit. 2012;34:160-4. DOI: 10.1097/FTD.0b013e31824981a6
Roberts JA, Ulldemolins M, Roberts M, Roberts MS, McWhinney B, Ungerer J, et al. Therapeutic drug monitoring of β-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents. 2010;36:332-9. DOI: 10.1016/j.ijantimicag. 2010.06.008
DOI: http://dx.doi.org/10.7399%2Ffh.13170
Enlaces refback
- No hay ningún enlace refback.
Farmacia Hospitalaria
Sociedad Española de Farmacia Hospitalaria. C/ Serrano n. 40 2º Dcha. - 28001 Madrid
eISSN: 2171-8695
ISSN-L: 1130-6343
Dep. Legal: M-39835-2012
Correo electrónico de contacto: [email protected]
Los artículos publicados en esta revista se distribuyen con la licencia: Creative Commons Attribution 4.0.
La revista Farmacia Hospitalaria no cobra tasas por el envío de trabajos, ni tampoco cuotas por la publicación de sus artículos.