Farmacoterapia personalizada en oncología: Aplicación de criterios farmacocinéticos-farmacodinámicos

Begoña Porta-Oltra, Matilde Merino-Sanjuán

Resumen


Objetivo: La indicación de una farmacoterapia personalizada en oncología se  sustenta en la selección del tratamiento óptimo (fármacos, dosis, vías y  métodos de administración y duración) y en el método de ajuste de la dosis  para alcanzar la máxima eficacia antineoplásica, expresada en términos de  remisión de la enfermedad o de tiempo libre de recaída, con una toxicidad  aceptable para el paciente. El objetivo de este trabajo es explorar la  contribución, en la personalización terapéutica en oncología clínica asistencial,  de la monitorización terapéutica de las concentraciones plasmáticas y la  aplicación de la información farmacocinética y farmacodinámica disponible para  algunos fármacos ampliamente utilizados.

Método: Se ha realizado una revisión bibliográfica no sistemática completa de  los criterios farmacocinéticos y farmacodinámicos de los antineoplásicos, así  como de los resultados derivados de su utilización en la práctica clínica  asistencial. En la búsqueda de artículos de alta calidad sobre los temas  planteados se han incluido fuentes bibliográficas primarias y secundarias. La  tilidad de la monitorización terapéutica se ha centrado en fármacos citotóxicos  parenterales, antineoplásicos orales, anticuerpos monoclonales y otras terapias  biológicas utilizadas en la práctica clínica asistencial. 

Resultados: La personalización terapéutica de fármacos antineoplásicos basada en la monitorización terapéutica de las  oncentraciones  plasmáticas, y la información que proporcionan los modelos farmacocinéticos- farmacodinámicos, permite reducir la toxicidad y aumentar la efectividad  asociada al tratamiento. Cuando se instaura un tratamiento personalizado con  metotrexato a altas dosis en pacientes con osteosarcoma se alcanza la  concentración máxima objetivo en un 70% de los ciclos (49% en dosis fijas), y  con 5-fluorouracilo en pacientes con cáncer colorrectal la tasa de respuesta es  del 33,7% (18,3% en dosis fijas). Con asparaginasa, busulfán, antineoplásicos  orales y anticuerpos monoclonales se obtienen tasas de beneficios similares.

Conclusiones: Debido al bajo intervalo terapéutico de los medicamentos antineoplásicos y a su alta variabilidad en la respuesta clínica,  tanto en términos de efectividad como de seguridad, la monitorización de sus  concentraciones plasmáticas, y la aplicación de los principios y de los modelos farmacocinéticos y farmacodinámicos, constituyen herramientas  actibles y prometedoras en la personalización de los tratamientos en oncología.

 


Palabras clave


Fármacos antineoplásicos; Farmacocinética; Farmacodinamia; Monitorización terapéutica de fármacos

Texto completo:

PDF (English) PDF

Referencias


Grochow LB. Individualized dosing of anti-cancer drugs and the role of therapeutic

monitoring. En: Grochow L, Ames M, eds. A clinician´s guide to chemotherapy

pharmacokinetics and pharmacodynamics. USA: Williams & Wrzosek; 1998;

p. 3-53.

Zandvliet AS, Schellens JHM, Beijnen JH, Huitema ADR. Population pharmacokinetics

and pharmacodynamics for treatment optimization in clinical oncology. Clin

Pharmacokinet. 2008;47:487-513.

Wilkinson DS. Therapeutic Drug Monitoring in Oncology. Ther Drug Monit.

;41:551-2.

De Jonge ME, Huitema DR, Schellens JHM, Rodenhuis S, Beijnen JH. Individualised

cancer chemotherapy: strategies and performance of prospective studies

on therapeutic drug monitoring with dose adaptation. Clin Pharmacokinet.

;44:147‑73.

Rousseau A, Marquet P, Debord J, Sabot C, Lachâtre G. Adaptive control

methods for the dose individualisation of anticancer agents. Clin Pharmacokinetic.

;38:315-53.

Sassen SDT, Zwaan CM, Van der Sluis IM, Mathôt RAA. Pharmacokinetics

and population pharmacokinetics in pediatric oncology. Pediatr Blood Cancer.

;67(4):e28132. DOI: 10.1002/pbc.28132

ICH Expert Working Group. International Conference of Harmonization of technical

requirements for registration of pharmaceuticals for human use. General considerations

for clinical trails E8 [Internet]. Step 4 version, July 17, 1997 [accessed 06/23/2021]:

p.]. Available at: https://database.ich.org/sites/default/files/E8_Guideline.pdf

Mandema JW. Population pharmacokinetics and pharmacodinamics. En: Welling

P, Tse FLS, eds. Pharmacokinetics: regulatory, industrial, academic perspective.

New York: Marcel Dekker; 1995; p. 441-50.

Menz BD, Stocker SL, Verougstraete N, Kocic D, Galettis P, Stove CP, et al. Barriers

and opportunities for the clinical implementation of therapeutic drug monitoring in

oncology. Br J Clin Pharmacol. 2021;87:227-33.

Jiménez Torres NV, Casabó Alós VG, Sancho Chust V, eds. Manual de procedimientos

para farmacocinética clínica. Valencia: AFAHPE (Fundación para el desarrollo

clínico de la Farmacia); 1997.

Slaviero KA, Clarke SJ, Rivory LP. Inflammatory response: an unrecognised source

of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy.

Lancet Oncol. 2003;4:224-32.

Cheymol G. Effects of Obesity on Pharmacokinetics. Implications for Drug Therapy.

Clin Pharmacokinet. 2000;39:215-31.

Hunter RJ, Navo MA, Thaker PH, Bodurka DC, Wolf JK, Smith JA. Doping chemotherapy

in obese patients: actual versus assigned body surface area (BSA).

Cancer Treat Rev. 2009;35:69-78.

Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. Role of organic anion transporter

OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite,

-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide

polymorphisms. Drug Metab Dispos. 2005;33:434-9.

Han JY, Lim HS, Yoo YK, Shin ES, Park YH, Lee SY, et al. Associations of ABCB1,

ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and

clinical outcome in patients with advanced non-small cell lung cancer. Cancer.

;110:138-47.

Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New

response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1).

Eur J Cancer. 2009;45:228-47.

U.S. Department of Health and Human Services. National Institutes of Health.

National Cancer Institute. Common Terminology Criteria for Adverse Events

(CTCAE) [Internet]. Version 5.0, november 27, 2017 [accessed 06/23/2021]:

p.]. Available at: https://ctep.cancer.gov/protocoldevelopment/electronic_

applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf

Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, et al. Predictive

Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft

Models after Administration of Anticancer Agents. Cancer Res. 2004;64:1094-101.

Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model of chemotherapy-

induced myelosuppression with parameter consistency across drugs. J Clin

Oncol. 2002;20:4713-21.

Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred

definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89-95.

Schindler E, Karlsson MO. A Minimal Continuous-Time Markov Pharmacometric

Model. AAPS J. 2017;19:1424-35.

Xu C, Ravva P, Dang JS, Laurent J, Adessi C, McIntyre C, et al. A continuous-time

multistate Markov model to describe the occurrence and severity of diarrhea events

in metastatic breast cancer patients treated with lumretuzumab in combination with

pertuzumab and paclitaxel. Cancer Chemother Pharmacol. 2018;82:395-406.

Xie F, Van Bocxlaer J, Colin P, Carlier C, Van Kerschaver O, Weerts J, et al. PKPD

Modeling and Dosing Considerations in Advanced Ovarian Cancer Patients Treated

with Cisplatin-Based Intraoperative Intraperitoneal Chemotherapy. AAPS J.

;22:96. DOI: 10.1208/s12248-020-00489-2

Hansson EK, Ma G, Amantea MA, French J, Milligan PA, Friberg LE, et al. PKPD

Modeling of Predictors for Adverse Effects and Overall Survival in Sunitinib-Treated

Patients With GIST. CPT Pharmacometrics Syst Pharmacol. 2013;2:e85. DOI:

1038/psp.2013.62

Austin PC. A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications.

Int Stat Rev. 2017;85:185-203.

Bonate PL. Pharmacokinetic-pharmacodynamic modeling and simulation. New

York, NY: Springer; 2006.

Pignon T, Lacarelle B, Duffaud F, Guillet P, Durand A, Monjanel S, et al. Pharmacokinetics

of high dose methotrexate in adult osteogenic sarcoma. Cancer Chemother

Pharmacol. 1994;33:420-4.

Legido Perdices E, González Álvarez A, Borrás Almenar C, Albert Marí A, Porta

Oltra B, Jiménez Torres NV. Individualización posológica de metotrexato a dosis

altas en pacientes con osteosarcoma. Póster nº 750. Presentado en 55 Congreso

Nacional de la Sociedad Española de Farmacia Hospitalaria; 2010. Madrid.

Evans W, Crom WR, Stewart CF, Bowman WP, Chen CH, Abromowitch M, et al.

Methotrexate systemic clearance influences probability of relapse in children with

standard-risk acute lymphocytic leukaemia. Lancet. 1984;323:359-62.

Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, et al. Review of

therapeutic drug monitoring of anticancer drugs part 1--cytotoxics. Eur J Cancer.

;50:2010-9.

Ramsey LB, Panetta JC, Smith C, Yang W, Fan Y, Winick NJ, et al. Genome-wide

study of methotrexate clearance replicates SLCO1B1. Blood. 2013;121:898-904.

Radtke S, Zolk O, Renner B, Paulides M, Zimmermann M, Möricke A, et al. Germline

genetic variations in methotrexate candidate genes are associated with pharmacokinetics,

toxicity, and outcome in childhood acute lymphoblastic leukemia.

Blood. 2013;121:5145-53.

Beumer JH, Chu E, Allegra C, Tanigawara Y, Milano G, Diasio R, et al. Therapeutic

Drug Monitoring in Oncology: IATDMCT Recommendations for 5-Fluorouracil Therapy.

Clin Pharmacol Ther. 2019;105:598-613.

Gamelin E, Delva R, Jacob J, Merrouche Y, Raoul JL, Pezet D, et al. Individual

fluorouracil dose adjustment based on pharmacokinetic follow-up compared with

conventional dosage: results of a multicenter randomized trial of patients with metastatic

colorectal cancer. J Clin Oncol. 2008;26:2099-105.

Kaldate RR, Haregewoin A, Grier CE, Hamilton SA, McLeod HL. Modeling the

-Fluorouracil Area Under the Curve Versus Dose Relationship to Develop a Pharmacokinetic

Dosing Algorithm for Colorectal Cancer Patients Receiving FOLFOX6.

The Oncologist. 2012;17:296-302.

Beumer JH, Boisdron-Celle M, Clarke W, Courtney JB, Egorin MJ, Gamelin E, et al.

Multicenter Evaluation of a Novel Nanoparticle Immunoassay for 5-Fluorouracil on

the Olympus AU400 Analyzer. Ther Drug Monit. 2009;31:688-94.

Henricks LM, Opdam FL, Beijnen JH, Cats A, Schellens JHM. DPYD genotypeguided

dose individualization to improve patient safety of fluoropyrimidine therapy:

call for a drug label update. Ann Oncol. 2017;28:2915-22.

Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, et al. Clinical

Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine

Dehydrogenase Genotype and Fluoropyrimidine Dosing. 2017 Update.

Clin Pharmacol Ther. 2018;103:210-6.

Lunenburg CATC, Van der Wouden CH, Nijenhuis M, Crommentuijn-van Rhenen

MH, De Boer-Veger NJ, Buunk AM, et al. Dutch Pharmacogenetics Working Group

(DPWG) guideline for the gene–drug interaction of DPYD and fluoropyrimidines. Eur

J Hum Genet. 2020;28:508-17.

Henricks LM, Lunenburg CATC, De Man FM, Meulendijks D, Frederix GWJ,

Kienhuis E, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine

therapy in patients with cancer: a prospective safety analysis. Lancet Oncol.

;19:1459-67.

Agencia Española del Medicamento. Nota de seguridad: Fluorouracilo, capecitabina,

tegafur y flucitosina en pacientes con déficit de dihidropirimidina

deshidrogenasa [Internet]. May 11, 2020 [accessed 06/23/2021]. Available

at: https://www.aemps.gob.es/informa/notasInformativas/medicamentosUsoHumano/

seguridad/2020/docs/NI_MUH_FV-8-2020-Fluorouracilo.

pdf?x16990

Groenland SL, Van Eerden RAG, Verheijen RB, Koolen SLW, Moes DJAR, Desar

IME, et al. Therapeutic Drug Monitoring of Oral Anticancer Drugs: The Dutch Pharmacology

Oncology Group–Therapeutic Drug Monitoring Protocol for a Prospective

Study. Ther Drug Monit. 2019;41:561-7.

Widmer N, Bardin C, Chatelut E, Paci A, Beijnen J, Levêque D, et al. Review of

therapeutic drug monitoring of anticancer drugs part two – Targeted therapies. Eur

J Cancer. 2014;50:2020-36.

Groenland SL, Mathijssen RHJ, Beijnen JH, Huitema ADR, Steeghs N. Individualized

dosing of oral targeted therapies in oncology is crucial in the era of precision

medicine. Eur J Clin Pharmacol. 2019;75:1309-18.

Netherlands Trial Register NTR6866. Therapeutic drug monitoring for oral anticancer

drugs [Internet]. Dec 2017 [accessed 09/06/2021]. Available at: https://

www.trialregister.nl/trial/6695

Mueller-Schoell A, Groenland SL, Scherf-Clavel O, Van Dyk M, Huisinga W,

Michelet R, et al. Therapeutic drug monitoring of oral targeted antineoplastic drugs.

Eur J Clin Pharmacol. 2021;77:441-64.

Verheijen RB, Yu H, Schellens JHM, Beijnen JH, Steeghs N, Huitema ADR. Practical

Recommendations for Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology.

Clin Pharmacol Ther. 2017;102:765-76.

Carton E, Noe G, Huillard O, Golmard L, Giroux J, Cessot A, et al. Relation

between plasma trough concentration of abiraterone and prostate-specific antigen

response in metastatic castration-resistant prostate cancer patients. Eur J Cancer.

;72:54-61.

Rini BI, Garrett M, Poland B, Dutcher JP, Rixe O, Wilding G, et al. Axitinib in Metastatic

Renal Cell Carcinoma: Results of a Pharmacokinetic and Pharmacodynamic

Analysis. J Clin Pharmacol. 2013; 53:491-504.

Tsuchiya N, Igarashi R, Suzuki-Honma N, Fujiyama N, Narita S, Inoue T, et al. Association

of pharmacokinetics of axitinib with treatment outcome and adverse events

in advanced renal cell carcinoma patients. J Clin Oncol [Internet]. 2015;33:suppl

; abstract 506 [accessed 09/09/2021]. Available at: https://ascopubs.org/

doi/10.1200/jco.2015.33.7_suppl.506

Verheijen RB, Atrafi F, Schellens JHS, Beijnen JH, Huitema ADR, Mathijssen RHJ,

et al. Pharmacokinetic Optimization of Everolimus Dosing in Oncology: A Randomized

Crossover Trial. Clin Pharmacokinet. 2018;57:637-44.

Zhao YY, Li S, Zhang Y, Zhao HY, Liao H, Guo Y, et al. The relationship between

drug exposure and clinical outcomes of non-small cell lung cancer patients treated

with gefitinib. Med Oncol. 2011;28:697-702.

Larson RA, Druker BJ, Guilhot F, O’Brien SG, Riviere GJ, Krahnke T, et al. Imatinib

pharmacokinetics and its correlation with response and safety in chronic-phase

chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111:4022‑8.

Rousselot P, Johnson-Ansah H, Huguet F, Legros L, Escoffre-Barbe M, Gardembas

M, et al. Personalized Daily Doses of Imatinib By Therapeutic Drug Monitoring

Increase the Rates of Molecular Responses in Patients with Chronic Myeloid Leukemia.

Final Results of the Randomized OPTIM Imatinib Study. Blood [Internet]. 2015

[accessed 09/09/2021];126:133. Available at: https://ashpublications.org/

blood/article/126/23/133/104854/Personalized-Daily-Doses-of-Imatinib-By

Demetri GD, Wang Y, Wehrle E, Racine A, Nikolova Z, Blanke CD, et al. Imatinib

plasma levels are correlated with clinical benefit in patients with unresectable/

metastatic gastrointestinal stromal tumors. J Clin Oncol. 2009;27:3141-7.

Suttle AB, Ball HA, Molimard M, Hutson TE, Carpenter C, Rajagopalan D, et al.

Relationships between pazopanib exposure and clinical safety and efficacy in

patients with advanced renal cell carcinoma. Br J Cancer. 2014;111:1-8.

Verheijen RB, Bins S, Mathijssen RHJ, Lolkema MP, Van Doorn L, Schellens JHM,

et al.; on behalf of the Dutch Pharmacology Oncology Group. Individualized Pazopanib

Dosing: A Prospective Feasibility Study in Cancer Patients. Clin Cancer Res.

;22:5738-46.

Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ. Relationship between

exposure to sunitinib and efficacy and tolerability endpoints in patients with

cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer

Chemother Pharmacol. 2010;66:357-71.

Yu H, Steeghs N, Nijenhuis CM, Schellens JHM, Beijnen JH, Huitema ADR. Practical

guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors:

focus on the pharmacokinetic targets. Clin Pharmacokinet. 2014;53:305-25.

Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW, et al. Tamoxifen

metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin

Pharmacol Ther. 2011;89:718-25.

Ouellet D, Kassir N, Chiu J, Mouksassi MS, Leonowens C, Cox D, et al. Population

pharmacokinetics and exposure-response of trametinib, a MEK inhibitor, in patients

with BRAF V600 mutation-positive melanoma. Cancer Chemother Pharmacol.

;77:807-17.

Fleisher B, Ait-Oudhia S. A retrospective examination of the US Food and Drug

Administration’s clinical pharmacology reviews of oncology biologics for potential

use of therapeutic drug monitoring. Onco Targets Ther. 2017;11:113-21.

Cartron G, Letestu R, Dartigeas C, Tout M, Mahé B, Gagez AL, et al. Increased

rituximab exposure does not improve response and outcome of patients

with chronic lymphocytic leukemia after fludarabine, cyclophosphamide, rituximab.

A French Innovative Leukemia Organization (FILO) study. Haematologica.

;103:e356e9. DOI: 10.3324/haematol.2017.182352

Paci A, Desnoyer A, Delahousse J, Blondel L, Maritaz C, Chaput N, et al. Pharmacokinetic/

pharmacodynamic relationship of therapeutic monoclonal antibodies

used in oncology: Part 1, monoclonal antibodies, antibody-drug conjugates

and bispecific T-cell engagers. Eur J Cancer. 2020;128:107-18. DOI: 10.1016/

j.ejca.2020.01.005

Le Louedec F, Leenhardt F, Marin C, Chatelut E, Evrard A, Ciccolini J. Cancer Immunotherapy

Dosing: A Pharmacokinetic/Pharmacodynamic Perspective. Vaccines.

;8:632; DOI: 10.3390/vaccines8040632

Desnoyer A, Broutin S, Delahousse J, Maritaz C, Blondel L, Mir O, et al. Pharmacokinetic/

pharmacodynamic relationship of therapeutic monoclonal antibodies

used in oncology: Part 2, immune checkpoint inhibitor antibodies. Eur J Cancer.

;128:119-28. DOI: 10.1016/j.ejca.2020.01.003

Berinstein NL, Grillo-López AJ, White CA, Bence-Bruckler I, Maloney D, Czuczman

M, et al. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor

response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma.

Ann Oncol. 1998;9:995-1001.

Jäger U, Fridrik M, Zeitlinger M, Heintel D, Hopfinger G, Burgstaller S, et al. Rituximab

serum concentrations during immuno-chemotherapy of follicular lymphoma

correlate with patient gender, bone marrow infiltration and clinical response. Haematologica.

;97:1431-8.

Tout M, Casasnovas O, Meignan M, Lamy T, Morschhauser F, Salles G, et al.

Rituximab exposure is influenced by baseline metabolic tumor volume and predicts

outcome of DLBCL patients: a Lymphoma Study Association report. Blood.

;129:2616-23.

Gibiansky E, Gibiansky L, Carlile DJ, Jamois C, Buchheit V, Frey N. Population pharmacokinetics

of obinutuzumab (GA101) in chronic lymphocytic leukemia (CLL) and

non-Hodgkin’s lymphoma and exposure-response in CLL. CPT Pharmacometrics Syst

Pharmacol. 2014;3:1-11. DOI: 10.1038/psp.2014.42

Nightingale G. Ofatumumab: a novel anti-CD20 monoclonal antibody for treatment

of refractory chronic lymphocytic leukemia. Ann Pharmacother. 2011;45:1248-55.

Caulet M, Lecomte T, Bouché O, Rollin J, Gouilleux-Gruart V, Azzopardi N, et al.

Bevacizumab pharmacokinetics influence overall and progression-free survival in

metastatic colorectal cancer patients. Clin Pharmacokinet. 2016;55:1381-94.

Becher F, Ciccolini J, Imbs DC, Marin C, Fournel C, Dupuis C, et al. A simple and

rapid LC-MS/MS method for therapeutic drug monitoring of cetuximab: a GPCOUNICANCER

proof of concept study in head-and-neck cancer patients. Sci Rep.

;7:2714. DOI: 10.1038/s41598-017-02821-x

Azzopardi N, Lecomte T, Ternant D, Boisdron-Celle M, Piller F, Morel A, et al. Cetuximab

pharmacokinetics influences progression-free survival of metastatic colorectal

cancer patients. Clin Cancer Res. 2011;17:6329-37.

Yang BB, Lum P, Chen A, Arends R, Roskos L, Smith B, et al. Pharmacokinetic and

pharmacodynamic perspectives on the clinical drug development of panitumumab.

Clin Pharmacokinet. 2010;49:729-40.

Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M, et al. Inhibitory

effects of combinations of HER-2/neu antibody and chemotherapeutic agents used

for treatment of human breast cancers. Oncogene. 1999;18:2241-51.

González García J, Gutiérrez Nicolás F, Nazco Casariego GJ, Batista López JN,

Ceballos Lenza I, Ramos Díaz R, et al. Influence of anthropometric characteristics in

patients with her2-positive breast cancer on initial plasma concentrations of trastuzumab.

Ann Pharmacother. 2017;51:976-80.

Rocca A, Andreis D, Fedeli A, Maltoni R, Sarti S, Cecconetto L, et al. Pharmacokinetics,

pharmacodynamics and clinical efficacy of pertuzumab in breast cancer

therapy. Expert Opin Drug Metabol Toxicol. 2015;11:1647-63.

Montillo M, Tedeschi A, Miqueleiz S, Veronese S, Cairoli R, Intropido L, et al.

Alemtuzumab as consolidation after a response to fludarabine is effective in purging

residual disease in patients with chronic lymphocytic leukemia. J Clin Oncol.

;24:2337-42.

Mould DR, Baumann A, Kuhlmann J, Keating MJ, Weitman S, Hillmen P, et al. Population

pharmacokinetics-pharmacodynamics of alemtuzumab (Campath) in patients

with chronic lymphocytic leukaemia and its link to treatment response. Br J Clin

Pharmacol. 2007;64:278-91.

Xu XS, Yan X, Puchalski T, Lonial S, Lokhorst HM, Voorhees PM, et al. Clinical implications

of complex pharmacokinetics for daratumumab dose regimen in patients

with relapsed/refractory multiple myeloma. Clin Pharmacol Ther. 2017;101:721-4.

Dowell JA, Korth-Bradley J, Liu H, King SP, Berger MS. Pharmacokinetics of

gemtuzumab ozogamicin, an antibodytargeted chemotherapy agent for the

treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol.

;41:1206-14.

Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, et al. Brentuximab

vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med.

;363:1812-21.

Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, et al. Phase I study of trastuzumab-

DM1, an HER2 antibody-drug conjugate, given every 3 Weeks to patients

with HER2-positive metastatic breast cancer. J Clin Oncol. 2010;28:2698‑704.

Besponsa: EPAR - Product Information [Internet] [accessed 09/08/2021]. Available

at: https://www.ema.europa.eu/en/documents/product-information/besponsaepar-

product-information_en.pdf

Lee KJ, Chow V, Weissman A, Tulpule S, Aldoss I, Akhtari M. Clinical use of blinatumomab

for B-cell acute lymphoblastic leukemia in adults. Ther Clin Risk Manag.

;12:1301-10.

Small EJ, Tchekmedyian NS, Rini BI, Fong L, Lowy I, Allison JP. A pilot trial of CTLA-4

blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer.

Clin Cancer Res. 2007;13:1810-5.

Wang E, Kang D, Bae KS, Marshall MA, Pavlov D, Parivar K. Population pharmacokinetic

and pharmacodynamic analysis of tremelimumab in patients with metastatic

melanoma. J Clin Pharmacol. 2014;54:1108-16.

Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y. Model-based population

pharmacokinetic analysis of nivolumab in patients with solid tumors. CPT Pharmacometrics

Syst Pharmacol. 2017;6:58-66.

Freshwater, T., Kondic, A., Ahamadi, M. et al. Evaluation of dosing strategy for

pembrolizumab for oncology indications. J. Immunotherapy Cancer 5, 43 (2017).

https://doi.org/10.1186/s40425-017-0242-5

Libtayo: EPAR - Product information [Internet] [accessed 09/08/2021]. Available

at: https://www.ema.europa.eu/en/documents/product-information/libtayo-eparproduct-

information_en.pdf.

Stroh M, Winter H, Marchand M, Claret L, Eppler S, Ruppel J, et al. Clinical

pharmacokinetics and pharmacodynamics of atezolizumab in metastatic urothelial

carcinoma. Clin Pharmacol Ther. 2017;102:305-12.

Kim ES. Avelumab: first global approval. Drugs. 2017;77:929-37.

Imfinzi: EPAR - product information [Internet] [accessed 09/08/2021]. Available

at: https://www.ema.europa.eu/en/documents/product-information/imfizi-eparproductinformation_

en.pdf

Asselin B, Rizzari C. Asparaginase pharmacokinetics and implications of therapeutic

drug monitoring. Leuk Lymphoma. 2015;56:2273-80.

Kloos RQH, Pieters R, Jumelet FMV, De Groot-Kruseman HA, Van den Bos C, Van

der Sluis IM. Individualized Asparaginase Dosing in Childhood Acute Lymphoblastic

Leukemia. J Clin Oncol. 2020;38:715-24.

Russell JA, Kangarloo SB. Therapeutic Drug Monitoring of Busulfan in Transplantation.

Curr Pharm Des. 2008;14:1936-49.

Kishimoto K, Hasegawa D, Irie K, Okada A, Nakamura S, Tamura A, et al. Pharmacokinetic

analysis for model-supported therapeutic drug monitoring of busulfan

in Japanese pediatric hematopoietic stem cell transplantation recipients. Pediatr

Transplant. 2020;24:e13696. DOI: 10.1111/petr.13696

Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, et al. Review of

therapeutic drug monitoring of anticancer drugs part 1 – Cytotoxics. Eur J Cancer.

;50:2010-9. DOI: 10.1016/j.ejca.2014.04.014

Barnett S, Kong J, Makin G, Veal GJ. Over a decade of experience with carboplatin

therapeutic drug monitoring in a childhood cancer setting in the United

Kingdom. Br J Clin Pharmacol. 2021;87:256-62.

Bénézet S, Guimbaud R, Chatelut E, Chevreau C, Bugat R, Canal P. How to

predict carboplatin clearance from standard morphological and biological characteristics

in obese patients. Ann Oncol. 1997;8:607-9.

Maillard M, Le Louedec F, Thomas F, Chatelut E. Diversity of dose-individualization

and therapeutic drug monitoring practices of platinum compounds: a review.

Expert Opin Drug Metab Toxicol. 2020;16:907-25.

Gerritsen-van Schieveen P, Royer B; Therapeutic drug monitoring group of

the French Society of Pharmacology and Therapeutics. Level of evidence

for therapeutic drug monitoring of taxanes. Fundam Clin Pharmacol. 2011;

:414-24.

Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan

treatment. Pharmgenomics Pers Med. 2017;10:61-8.

Hulshof EC, Deenen MJ, Guchelaar HJ, Gelderblom H. Pre-therapeutic UGT1A1

genotyping to reduce the risk of irinotecan-induced severe toxicity: Ready for

prime time. Eur J Cancer. 2020;141:9-20.

The Royal Dutch Pharmacists Association - Pharmacogenetics Working Group.

Dutch guidelines [Internet] November 2018 update [accessed 09/08/2021].

Available at: https://www.pharmgkb.org/guidelineAnnotation/PA166104951

Etienne-Grimaldi MC, Boyer JC, Thomas F, Quaranta S, Picard N, Loriot MA,

et al.; Collective work by Groupe de Pharmacologie Clinique Oncologique

(GPCO-Unicancer); French Réseau National de Pharmacogénétique Hospitalière

(RNPGx). UGT1A1 genotype and irinotecan therapy: general review and implementation

in routine practice. Fundam Clin Pharmacol. 2015;29:219-37. DOI:

1111/fcp.12117


Enlaces refback

  • No hay ningún enlace refback.


Incluida en:

Bibliovigilance Dialnet DOAJ Dulcinea EBSCO Embase ESCI Ibecs Latindex MEDES mEDRA MIAR PUBMED REDALYC Redib SciELO SCOPUS Sherpa/Romero

Farmacia Hospitalaria

Sociedad Española de Farmacia Hospitalaria. C/ Serrano n. 40 2º Dcha. - 28001 Madrid

eISSN: 2171-8695 

ISSN-L: 1130-6343

Dep. Legal: M-39835-2012

Correo electrónico de contacto: [email protected]

Los artículos publicados en esta revista se distribuyen con la licencia: Creative Commons Attribution 4.0.

La revista Farmacia Hospitalaria no cobra tasas por el envío de trabajos, ni tampoco cuotas por la publicación de sus artículos.