Farmacoterapia personalizada en oncología: Aplicación de criterios farmacocinéticos-farmacodinámicos
Resumen
Objetivo: La indicación de una farmacoterapia personalizada en oncología se sustenta en la selección del tratamiento óptimo (fármacos, dosis, vías y métodos de administración y duración) y en el método de ajuste de la dosis para alcanzar la máxima eficacia antineoplásica, expresada en términos de remisión de la enfermedad o de tiempo libre de recaída, con una toxicidad aceptable para el paciente. El objetivo de este trabajo es explorar la contribución, en la personalización terapéutica en oncología clínica asistencial, de la monitorización terapéutica de las concentraciones plasmáticas y la aplicación de la información farmacocinética y farmacodinámica disponible para algunos fármacos ampliamente utilizados.
Método: Se ha realizado una revisión bibliográfica no sistemática completa de los criterios farmacocinéticos y farmacodinámicos de los antineoplásicos, así como de los resultados derivados de su utilización en la práctica clínica asistencial. En la búsqueda de artículos de alta calidad sobre los temas planteados se han incluido fuentes bibliográficas primarias y secundarias. La tilidad de la monitorización terapéutica se ha centrado en fármacos citotóxicos parenterales, antineoplásicos orales, anticuerpos monoclonales y otras terapias biológicas utilizadas en la práctica clínica asistencial.
Resultados: La personalización terapéutica de fármacos antineoplásicos basada en la monitorización terapéutica de las oncentraciones plasmáticas, y la información que proporcionan los modelos farmacocinéticos- farmacodinámicos, permite reducir la toxicidad y aumentar la efectividad asociada al tratamiento. Cuando se instaura un tratamiento personalizado con metotrexato a altas dosis en pacientes con osteosarcoma se alcanza la concentración máxima objetivo en un 70% de los ciclos (49% en dosis fijas), y con 5-fluorouracilo en pacientes con cáncer colorrectal la tasa de respuesta es del 33,7% (18,3% en dosis fijas). Con asparaginasa, busulfán, antineoplásicos orales y anticuerpos monoclonales se obtienen tasas de beneficios similares.
Conclusiones: Debido al bajo intervalo terapéutico de los medicamentos antineoplásicos y a su alta variabilidad en la respuesta clínica, tanto en términos de efectividad como de seguridad, la monitorización de sus concentraciones plasmáticas, y la aplicación de los principios y de los modelos farmacocinéticos y farmacodinámicos, constituyen herramientas actibles y prometedoras en la personalización de los tratamientos en oncología.
Palabras clave
Referencias
Grochow LB. Individualized dosing of anti-cancer drugs and the role of therapeutic
monitoring. En: Grochow L, Ames M, eds. A clinician´s guide to chemotherapy
pharmacokinetics and pharmacodynamics. USA: Williams & Wrzosek; 1998;
p. 3-53.
Zandvliet AS, Schellens JHM, Beijnen JH, Huitema ADR. Population pharmacokinetics
and pharmacodynamics for treatment optimization in clinical oncology. Clin
Pharmacokinet. 2008;47:487-513.
Wilkinson DS. Therapeutic Drug Monitoring in Oncology. Ther Drug Monit.
;41:551-2.
De Jonge ME, Huitema DR, Schellens JHM, Rodenhuis S, Beijnen JH. Individualised
cancer chemotherapy: strategies and performance of prospective studies
on therapeutic drug monitoring with dose adaptation. Clin Pharmacokinet.
;44:147‑73.
Rousseau A, Marquet P, Debord J, Sabot C, Lachâtre G. Adaptive control
methods for the dose individualisation of anticancer agents. Clin Pharmacokinetic.
;38:315-53.
Sassen SDT, Zwaan CM, Van der Sluis IM, Mathôt RAA. Pharmacokinetics
and population pharmacokinetics in pediatric oncology. Pediatr Blood Cancer.
;67(4):e28132. DOI: 10.1002/pbc.28132
ICH Expert Working Group. International Conference of Harmonization of technical
requirements for registration of pharmaceuticals for human use. General considerations
for clinical trails E8 [Internet]. Step 4 version, July 17, 1997 [accessed 06/23/2021]:
p.]. Available at: https://database.ich.org/sites/default/files/E8_Guideline.pdf
Mandema JW. Population pharmacokinetics and pharmacodinamics. En: Welling
P, Tse FLS, eds. Pharmacokinetics: regulatory, industrial, academic perspective.
New York: Marcel Dekker; 1995; p. 441-50.
Menz BD, Stocker SL, Verougstraete N, Kocic D, Galettis P, Stove CP, et al. Barriers
and opportunities for the clinical implementation of therapeutic drug monitoring in
oncology. Br J Clin Pharmacol. 2021;87:227-33.
Jiménez Torres NV, Casabó Alós VG, Sancho Chust V, eds. Manual de procedimientos
para farmacocinética clínica. Valencia: AFAHPE (Fundación para el desarrollo
clínico de la Farmacia); 1997.
Slaviero KA, Clarke SJ, Rivory LP. Inflammatory response: an unrecognised source
of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy.
Lancet Oncol. 2003;4:224-32.
Cheymol G. Effects of Obesity on Pharmacokinetics. Implications for Drug Therapy.
Clin Pharmacokinet. 2000;39:215-31.
Hunter RJ, Navo MA, Thaker PH, Bodurka DC, Wolf JK, Smith JA. Doping chemotherapy
in obese patients: actual versus assigned body surface area (BSA).
Cancer Treat Rev. 2009;35:69-78.
Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. Role of organic anion transporter
OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite,
-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide
polymorphisms. Drug Metab Dispos. 2005;33:434-9.
Han JY, Lim HS, Yoo YK, Shin ES, Park YH, Lee SY, et al. Associations of ABCB1,
ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and
clinical outcome in patients with advanced non-small cell lung cancer. Cancer.
;110:138-47.
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New
response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1).
Eur J Cancer. 2009;45:228-47.
U.S. Department of Health and Human Services. National Institutes of Health.
National Cancer Institute. Common Terminology Criteria for Adverse Events
(CTCAE) [Internet]. Version 5.0, november 27, 2017 [accessed 06/23/2021]:
p.]. Available at: https://ctep.cancer.gov/protocoldevelopment/electronic_
applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf
Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, et al. Predictive
Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft
Models after Administration of Anticancer Agents. Cancer Res. 2004;64:1094-101.
Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model of chemotherapy-
induced myelosuppression with parameter consistency across drugs. J Clin
Oncol. 2002;20:4713-21.
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred
definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89-95.
Schindler E, Karlsson MO. A Minimal Continuous-Time Markov Pharmacometric
Model. AAPS J. 2017;19:1424-35.
Xu C, Ravva P, Dang JS, Laurent J, Adessi C, McIntyre C, et al. A continuous-time
multistate Markov model to describe the occurrence and severity of diarrhea events
in metastatic breast cancer patients treated with lumretuzumab in combination with
pertuzumab and paclitaxel. Cancer Chemother Pharmacol. 2018;82:395-406.
Xie F, Van Bocxlaer J, Colin P, Carlier C, Van Kerschaver O, Weerts J, et al. PKPD
Modeling and Dosing Considerations in Advanced Ovarian Cancer Patients Treated
with Cisplatin-Based Intraoperative Intraperitoneal Chemotherapy. AAPS J.
;22:96. DOI: 10.1208/s12248-020-00489-2
Hansson EK, Ma G, Amantea MA, French J, Milligan PA, Friberg LE, et al. PKPD
Modeling of Predictors for Adverse Effects and Overall Survival in Sunitinib-Treated
Patients With GIST. CPT Pharmacometrics Syst Pharmacol. 2013;2:e85. DOI:
1038/psp.2013.62
Austin PC. A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications.
Int Stat Rev. 2017;85:185-203.
Bonate PL. Pharmacokinetic-pharmacodynamic modeling and simulation. New
York, NY: Springer; 2006.
Pignon T, Lacarelle B, Duffaud F, Guillet P, Durand A, Monjanel S, et al. Pharmacokinetics
of high dose methotrexate in adult osteogenic sarcoma. Cancer Chemother
Pharmacol. 1994;33:420-4.
Legido Perdices E, González Álvarez A, Borrás Almenar C, Albert Marí A, Porta
Oltra B, Jiménez Torres NV. Individualización posológica de metotrexato a dosis
altas en pacientes con osteosarcoma. Póster nº 750. Presentado en 55 Congreso
Nacional de la Sociedad Española de Farmacia Hospitalaria; 2010. Madrid.
Evans W, Crom WR, Stewart CF, Bowman WP, Chen CH, Abromowitch M, et al.
Methotrexate systemic clearance influences probability of relapse in children with
standard-risk acute lymphocytic leukaemia. Lancet. 1984;323:359-62.
Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, et al. Review of
therapeutic drug monitoring of anticancer drugs part 1--cytotoxics. Eur J Cancer.
;50:2010-9.
Ramsey LB, Panetta JC, Smith C, Yang W, Fan Y, Winick NJ, et al. Genome-wide
study of methotrexate clearance replicates SLCO1B1. Blood. 2013;121:898-904.
Radtke S, Zolk O, Renner B, Paulides M, Zimmermann M, Möricke A, et al. Germline
genetic variations in methotrexate candidate genes are associated with pharmacokinetics,
toxicity, and outcome in childhood acute lymphoblastic leukemia.
Blood. 2013;121:5145-53.
Beumer JH, Chu E, Allegra C, Tanigawara Y, Milano G, Diasio R, et al. Therapeutic
Drug Monitoring in Oncology: IATDMCT Recommendations for 5-Fluorouracil Therapy.
Clin Pharmacol Ther. 2019;105:598-613.
Gamelin E, Delva R, Jacob J, Merrouche Y, Raoul JL, Pezet D, et al. Individual
fluorouracil dose adjustment based on pharmacokinetic follow-up compared with
conventional dosage: results of a multicenter randomized trial of patients with metastatic
colorectal cancer. J Clin Oncol. 2008;26:2099-105.
Kaldate RR, Haregewoin A, Grier CE, Hamilton SA, McLeod HL. Modeling the
-Fluorouracil Area Under the Curve Versus Dose Relationship to Develop a Pharmacokinetic
Dosing Algorithm for Colorectal Cancer Patients Receiving FOLFOX6.
The Oncologist. 2012;17:296-302.
Beumer JH, Boisdron-Celle M, Clarke W, Courtney JB, Egorin MJ, Gamelin E, et al.
Multicenter Evaluation of a Novel Nanoparticle Immunoassay for 5-Fluorouracil on
the Olympus AU400 Analyzer. Ther Drug Monit. 2009;31:688-94.
Henricks LM, Opdam FL, Beijnen JH, Cats A, Schellens JHM. DPYD genotypeguided
dose individualization to improve patient safety of fluoropyrimidine therapy:
call for a drug label update. Ann Oncol. 2017;28:2915-22.
Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, et al. Clinical
Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine
Dehydrogenase Genotype and Fluoropyrimidine Dosing. 2017 Update.
Clin Pharmacol Ther. 2018;103:210-6.
Lunenburg CATC, Van der Wouden CH, Nijenhuis M, Crommentuijn-van Rhenen
MH, De Boer-Veger NJ, Buunk AM, et al. Dutch Pharmacogenetics Working Group
(DPWG) guideline for the gene–drug interaction of DPYD and fluoropyrimidines. Eur
J Hum Genet. 2020;28:508-17.
Henricks LM, Lunenburg CATC, De Man FM, Meulendijks D, Frederix GWJ,
Kienhuis E, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine
therapy in patients with cancer: a prospective safety analysis. Lancet Oncol.
;19:1459-67.
Agencia Española del Medicamento. Nota de seguridad: Fluorouracilo, capecitabina,
tegafur y flucitosina en pacientes con déficit de dihidropirimidina
deshidrogenasa [Internet]. May 11, 2020 [accessed 06/23/2021]. Available
at: https://www.aemps.gob.es/informa/notasInformativas/medicamentosUsoHumano/
seguridad/2020/docs/NI_MUH_FV-8-2020-Fluorouracilo.
pdf?x16990
Groenland SL, Van Eerden RAG, Verheijen RB, Koolen SLW, Moes DJAR, Desar
IME, et al. Therapeutic Drug Monitoring of Oral Anticancer Drugs: The Dutch Pharmacology
Oncology Group–Therapeutic Drug Monitoring Protocol for a Prospective
Study. Ther Drug Monit. 2019;41:561-7.
Widmer N, Bardin C, Chatelut E, Paci A, Beijnen J, Levêque D, et al. Review of
therapeutic drug monitoring of anticancer drugs part two – Targeted therapies. Eur
J Cancer. 2014;50:2020-36.
Groenland SL, Mathijssen RHJ, Beijnen JH, Huitema ADR, Steeghs N. Individualized
dosing of oral targeted therapies in oncology is crucial in the era of precision
medicine. Eur J Clin Pharmacol. 2019;75:1309-18.
Netherlands Trial Register NTR6866. Therapeutic drug monitoring for oral anticancer
drugs [Internet]. Dec 2017 [accessed 09/06/2021]. Available at: https://
www.trialregister.nl/trial/6695
Mueller-Schoell A, Groenland SL, Scherf-Clavel O, Van Dyk M, Huisinga W,
Michelet R, et al. Therapeutic drug monitoring of oral targeted antineoplastic drugs.
Eur J Clin Pharmacol. 2021;77:441-64.
Verheijen RB, Yu H, Schellens JHM, Beijnen JH, Steeghs N, Huitema ADR. Practical
Recommendations for Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology.
Clin Pharmacol Ther. 2017;102:765-76.
Carton E, Noe G, Huillard O, Golmard L, Giroux J, Cessot A, et al. Relation
between plasma trough concentration of abiraterone and prostate-specific antigen
response in metastatic castration-resistant prostate cancer patients. Eur J Cancer.
;72:54-61.
Rini BI, Garrett M, Poland B, Dutcher JP, Rixe O, Wilding G, et al. Axitinib in Metastatic
Renal Cell Carcinoma: Results of a Pharmacokinetic and Pharmacodynamic
Analysis. J Clin Pharmacol. 2013; 53:491-504.
Tsuchiya N, Igarashi R, Suzuki-Honma N, Fujiyama N, Narita S, Inoue T, et al. Association
of pharmacokinetics of axitinib with treatment outcome and adverse events
in advanced renal cell carcinoma patients. J Clin Oncol [Internet]. 2015;33:suppl
; abstract 506 [accessed 09/09/2021]. Available at: https://ascopubs.org/
doi/10.1200/jco.2015.33.7_suppl.506
Verheijen RB, Atrafi F, Schellens JHS, Beijnen JH, Huitema ADR, Mathijssen RHJ,
et al. Pharmacokinetic Optimization of Everolimus Dosing in Oncology: A Randomized
Crossover Trial. Clin Pharmacokinet. 2018;57:637-44.
Zhao YY, Li S, Zhang Y, Zhao HY, Liao H, Guo Y, et al. The relationship between
drug exposure and clinical outcomes of non-small cell lung cancer patients treated
with gefitinib. Med Oncol. 2011;28:697-702.
Larson RA, Druker BJ, Guilhot F, O’Brien SG, Riviere GJ, Krahnke T, et al. Imatinib
pharmacokinetics and its correlation with response and safety in chronic-phase
chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111:4022‑8.
Rousselot P, Johnson-Ansah H, Huguet F, Legros L, Escoffre-Barbe M, Gardembas
M, et al. Personalized Daily Doses of Imatinib By Therapeutic Drug Monitoring
Increase the Rates of Molecular Responses in Patients with Chronic Myeloid Leukemia.
Final Results of the Randomized OPTIM Imatinib Study. Blood [Internet]. 2015
[accessed 09/09/2021];126:133. Available at: https://ashpublications.org/
blood/article/126/23/133/104854/Personalized-Daily-Doses-of-Imatinib-By
Demetri GD, Wang Y, Wehrle E, Racine A, Nikolova Z, Blanke CD, et al. Imatinib
plasma levels are correlated with clinical benefit in patients with unresectable/
metastatic gastrointestinal stromal tumors. J Clin Oncol. 2009;27:3141-7.
Suttle AB, Ball HA, Molimard M, Hutson TE, Carpenter C, Rajagopalan D, et al.
Relationships between pazopanib exposure and clinical safety and efficacy in
patients with advanced renal cell carcinoma. Br J Cancer. 2014;111:1-8.
Verheijen RB, Bins S, Mathijssen RHJ, Lolkema MP, Van Doorn L, Schellens JHM,
et al.; on behalf of the Dutch Pharmacology Oncology Group. Individualized Pazopanib
Dosing: A Prospective Feasibility Study in Cancer Patients. Clin Cancer Res.
;22:5738-46.
Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ. Relationship between
exposure to sunitinib and efficacy and tolerability endpoints in patients with
cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer
Chemother Pharmacol. 2010;66:357-71.
Yu H, Steeghs N, Nijenhuis CM, Schellens JHM, Beijnen JH, Huitema ADR. Practical
guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors:
focus on the pharmacokinetic targets. Clin Pharmacokinet. 2014;53:305-25.
Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW, et al. Tamoxifen
metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin
Pharmacol Ther. 2011;89:718-25.
Ouellet D, Kassir N, Chiu J, Mouksassi MS, Leonowens C, Cox D, et al. Population
pharmacokinetics and exposure-response of trametinib, a MEK inhibitor, in patients
with BRAF V600 mutation-positive melanoma. Cancer Chemother Pharmacol.
;77:807-17.
Fleisher B, Ait-Oudhia S. A retrospective examination of the US Food and Drug
Administration’s clinical pharmacology reviews of oncology biologics for potential
use of therapeutic drug monitoring. Onco Targets Ther. 2017;11:113-21.
Cartron G, Letestu R, Dartigeas C, Tout M, Mahé B, Gagez AL, et al. Increased
rituximab exposure does not improve response and outcome of patients
with chronic lymphocytic leukemia after fludarabine, cyclophosphamide, rituximab.
A French Innovative Leukemia Organization (FILO) study. Haematologica.
;103:e356e9. DOI: 10.3324/haematol.2017.182352
Paci A, Desnoyer A, Delahousse J, Blondel L, Maritaz C, Chaput N, et al. Pharmacokinetic/
pharmacodynamic relationship of therapeutic monoclonal antibodies
used in oncology: Part 1, monoclonal antibodies, antibody-drug conjugates
and bispecific T-cell engagers. Eur J Cancer. 2020;128:107-18. DOI: 10.1016/
j.ejca.2020.01.005
Le Louedec F, Leenhardt F, Marin C, Chatelut E, Evrard A, Ciccolini J. Cancer Immunotherapy
Dosing: A Pharmacokinetic/Pharmacodynamic Perspective. Vaccines.
;8:632; DOI: 10.3390/vaccines8040632
Desnoyer A, Broutin S, Delahousse J, Maritaz C, Blondel L, Mir O, et al. Pharmacokinetic/
pharmacodynamic relationship of therapeutic monoclonal antibodies
used in oncology: Part 2, immune checkpoint inhibitor antibodies. Eur J Cancer.
;128:119-28. DOI: 10.1016/j.ejca.2020.01.003
Berinstein NL, Grillo-López AJ, White CA, Bence-Bruckler I, Maloney D, Czuczman
M, et al. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor
response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma.
Ann Oncol. 1998;9:995-1001.
Jäger U, Fridrik M, Zeitlinger M, Heintel D, Hopfinger G, Burgstaller S, et al. Rituximab
serum concentrations during immuno-chemotherapy of follicular lymphoma
correlate with patient gender, bone marrow infiltration and clinical response. Haematologica.
;97:1431-8.
Tout M, Casasnovas O, Meignan M, Lamy T, Morschhauser F, Salles G, et al.
Rituximab exposure is influenced by baseline metabolic tumor volume and predicts
outcome of DLBCL patients: a Lymphoma Study Association report. Blood.
;129:2616-23.
Gibiansky E, Gibiansky L, Carlile DJ, Jamois C, Buchheit V, Frey N. Population pharmacokinetics
of obinutuzumab (GA101) in chronic lymphocytic leukemia (CLL) and
non-Hodgkin’s lymphoma and exposure-response in CLL. CPT Pharmacometrics Syst
Pharmacol. 2014;3:1-11. DOI: 10.1038/psp.2014.42
Nightingale G. Ofatumumab: a novel anti-CD20 monoclonal antibody for treatment
of refractory chronic lymphocytic leukemia. Ann Pharmacother. 2011;45:1248-55.
Caulet M, Lecomte T, Bouché O, Rollin J, Gouilleux-Gruart V, Azzopardi N, et al.
Bevacizumab pharmacokinetics influence overall and progression-free survival in
metastatic colorectal cancer patients. Clin Pharmacokinet. 2016;55:1381-94.
Becher F, Ciccolini J, Imbs DC, Marin C, Fournel C, Dupuis C, et al. A simple and
rapid LC-MS/MS method for therapeutic drug monitoring of cetuximab: a GPCOUNICANCER
proof of concept study in head-and-neck cancer patients. Sci Rep.
;7:2714. DOI: 10.1038/s41598-017-02821-x
Azzopardi N, Lecomte T, Ternant D, Boisdron-Celle M, Piller F, Morel A, et al. Cetuximab
pharmacokinetics influences progression-free survival of metastatic colorectal
cancer patients. Clin Cancer Res. 2011;17:6329-37.
Yang BB, Lum P, Chen A, Arends R, Roskos L, Smith B, et al. Pharmacokinetic and
pharmacodynamic perspectives on the clinical drug development of panitumumab.
Clin Pharmacokinet. 2010;49:729-40.
Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M, et al. Inhibitory
effects of combinations of HER-2/neu antibody and chemotherapeutic agents used
for treatment of human breast cancers. Oncogene. 1999;18:2241-51.
González García J, Gutiérrez Nicolás F, Nazco Casariego GJ, Batista López JN,
Ceballos Lenza I, Ramos Díaz R, et al. Influence of anthropometric characteristics in
patients with her2-positive breast cancer on initial plasma concentrations of trastuzumab.
Ann Pharmacother. 2017;51:976-80.
Rocca A, Andreis D, Fedeli A, Maltoni R, Sarti S, Cecconetto L, et al. Pharmacokinetics,
pharmacodynamics and clinical efficacy of pertuzumab in breast cancer
therapy. Expert Opin Drug Metabol Toxicol. 2015;11:1647-63.
Montillo M, Tedeschi A, Miqueleiz S, Veronese S, Cairoli R, Intropido L, et al.
Alemtuzumab as consolidation after a response to fludarabine is effective in purging
residual disease in patients with chronic lymphocytic leukemia. J Clin Oncol.
;24:2337-42.
Mould DR, Baumann A, Kuhlmann J, Keating MJ, Weitman S, Hillmen P, et al. Population
pharmacokinetics-pharmacodynamics of alemtuzumab (Campath) in patients
with chronic lymphocytic leukaemia and its link to treatment response. Br J Clin
Pharmacol. 2007;64:278-91.
Xu XS, Yan X, Puchalski T, Lonial S, Lokhorst HM, Voorhees PM, et al. Clinical implications
of complex pharmacokinetics for daratumumab dose regimen in patients
with relapsed/refractory multiple myeloma. Clin Pharmacol Ther. 2017;101:721-4.
Dowell JA, Korth-Bradley J, Liu H, King SP, Berger MS. Pharmacokinetics of
gemtuzumab ozogamicin, an antibodytargeted chemotherapy agent for the
treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol.
;41:1206-14.
Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, et al. Brentuximab
vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med.
;363:1812-21.
Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, et al. Phase I study of trastuzumab-
DM1, an HER2 antibody-drug conjugate, given every 3 Weeks to patients
with HER2-positive metastatic breast cancer. J Clin Oncol. 2010;28:2698‑704.
Besponsa: EPAR - Product Information [Internet] [accessed 09/08/2021]. Available
at: https://www.ema.europa.eu/en/documents/product-information/besponsaepar-
product-information_en.pdf
Lee KJ, Chow V, Weissman A, Tulpule S, Aldoss I, Akhtari M. Clinical use of blinatumomab
for B-cell acute lymphoblastic leukemia in adults. Ther Clin Risk Manag.
;12:1301-10.
Small EJ, Tchekmedyian NS, Rini BI, Fong L, Lowy I, Allison JP. A pilot trial of CTLA-4
blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer.
Clin Cancer Res. 2007;13:1810-5.
Wang E, Kang D, Bae KS, Marshall MA, Pavlov D, Parivar K. Population pharmacokinetic
and pharmacodynamic analysis of tremelimumab in patients with metastatic
melanoma. J Clin Pharmacol. 2014;54:1108-16.
Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y. Model-based population
pharmacokinetic analysis of nivolumab in patients with solid tumors. CPT Pharmacometrics
Syst Pharmacol. 2017;6:58-66.
Freshwater, T., Kondic, A., Ahamadi, M. et al. Evaluation of dosing strategy for
pembrolizumab for oncology indications. J. Immunotherapy Cancer 5, 43 (2017).
https://doi.org/10.1186/s40425-017-0242-5
Libtayo: EPAR - Product information [Internet] [accessed 09/08/2021]. Available
at: https://www.ema.europa.eu/en/documents/product-information/libtayo-eparproduct-
information_en.pdf.
Stroh M, Winter H, Marchand M, Claret L, Eppler S, Ruppel J, et al. Clinical
pharmacokinetics and pharmacodynamics of atezolizumab in metastatic urothelial
carcinoma. Clin Pharmacol Ther. 2017;102:305-12.
Kim ES. Avelumab: first global approval. Drugs. 2017;77:929-37.
Imfinzi: EPAR - product information [Internet] [accessed 09/08/2021]. Available
at: https://www.ema.europa.eu/en/documents/product-information/imfizi-eparproductinformation_
en.pdf
Asselin B, Rizzari C. Asparaginase pharmacokinetics and implications of therapeutic
drug monitoring. Leuk Lymphoma. 2015;56:2273-80.
Kloos RQH, Pieters R, Jumelet FMV, De Groot-Kruseman HA, Van den Bos C, Van
der Sluis IM. Individualized Asparaginase Dosing in Childhood Acute Lymphoblastic
Leukemia. J Clin Oncol. 2020;38:715-24.
Russell JA, Kangarloo SB. Therapeutic Drug Monitoring of Busulfan in Transplantation.
Curr Pharm Des. 2008;14:1936-49.
Kishimoto K, Hasegawa D, Irie K, Okada A, Nakamura S, Tamura A, et al. Pharmacokinetic
analysis for model-supported therapeutic drug monitoring of busulfan
in Japanese pediatric hematopoietic stem cell transplantation recipients. Pediatr
Transplant. 2020;24:e13696. DOI: 10.1111/petr.13696
Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, et al. Review of
therapeutic drug monitoring of anticancer drugs part 1 – Cytotoxics. Eur J Cancer.
;50:2010-9. DOI: 10.1016/j.ejca.2014.04.014
Barnett S, Kong J, Makin G, Veal GJ. Over a decade of experience with carboplatin
therapeutic drug monitoring in a childhood cancer setting in the United
Kingdom. Br J Clin Pharmacol. 2021;87:256-62.
Bénézet S, Guimbaud R, Chatelut E, Chevreau C, Bugat R, Canal P. How to
predict carboplatin clearance from standard morphological and biological characteristics
in obese patients. Ann Oncol. 1997;8:607-9.
Maillard M, Le Louedec F, Thomas F, Chatelut E. Diversity of dose-individualization
and therapeutic drug monitoring practices of platinum compounds: a review.
Expert Opin Drug Metab Toxicol. 2020;16:907-25.
Gerritsen-van Schieveen P, Royer B; Therapeutic drug monitoring group of
the French Society of Pharmacology and Therapeutics. Level of evidence
for therapeutic drug monitoring of taxanes. Fundam Clin Pharmacol. 2011;
:414-24.
Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan
treatment. Pharmgenomics Pers Med. 2017;10:61-8.
Hulshof EC, Deenen MJ, Guchelaar HJ, Gelderblom H. Pre-therapeutic UGT1A1
genotyping to reduce the risk of irinotecan-induced severe toxicity: Ready for
prime time. Eur J Cancer. 2020;141:9-20.
The Royal Dutch Pharmacists Association - Pharmacogenetics Working Group.
Dutch guidelines [Internet] November 2018 update [accessed 09/08/2021].
Available at: https://www.pharmgkb.org/guidelineAnnotation/PA166104951
Etienne-Grimaldi MC, Boyer JC, Thomas F, Quaranta S, Picard N, Loriot MA,
et al.; Collective work by Groupe de Pharmacologie Clinique Oncologique
(GPCO-Unicancer); French Réseau National de Pharmacogénétique Hospitalière
(RNPGx). UGT1A1 genotype and irinotecan therapy: general review and implementation
in routine practice. Fundam Clin Pharmacol. 2015;29:219-37. DOI:
1111/fcp.12117
Enlaces refback
- No hay ningún enlace refback.
Farmacia Hospitalaria
Sociedad Española de Farmacia Hospitalaria. C/ Serrano n. 40 2º Dcha. - 28001 Madrid
eISSN: 2171-8695
ISSN-L: 1130-6343
Dep. Legal: M-39835-2012
Correo electrónico de contacto: [email protected]
Los artículos publicados en esta revista se distribuyen con la licencia: Creative Commons Attribution 4.0.
La revista Farmacia Hospitalaria no cobra tasas por el envío de trabajos, ni tampoco cuotas por la publicación de sus artículos.